polynomial-ring

Crates.iopolynomial-ring
lib.rspolynomial-ring
version
sourcesrc
created_at2020-04-05 04:54:02.289392+00
updated_at2025-04-11 17:33:34.781962+00
descriptionA polynomial implementation
homepage
repositoryhttps://gitlab.com/Toru3/polynomial-ring
max_upload_size
id226493
Cargo.toml error:TOML parse error at line 19, column 1 | 19 | autolib = false | ^^^^^^^ unknown field `autolib`, expected one of `name`, `version`, `edition`, `authors`, `description`, `readme`, `license`, `repository`, `homepage`, `documentation`, `build`, `resolver`, `links`, `default-run`, `default_dash_run`, `rust-version`, `rust_dash_version`, `rust_version`, `license-file`, `license_dash_file`, `license_file`, `licenseFile`, `license_capital_file`, `forced-target`, `forced_dash_target`, `autobins`, `autotests`, `autoexamples`, `autobenches`, `publish`, `metadata`, `keywords`, `categories`, `exclude`, `include`
size0
(Toru3)

documentation

https://docs.rs/polynomial-ring/

README

Polynomial Ring

A polynomial implementation.

use num::Rational64;
use polynomial_ring::Polynomial;

let f = Polynomial::new(vec![3, 1, 4, 1, 5].into_iter().map(|x| Rational64::from_integer(x)).collect());
let g = Polynomial::new(vec![2, 7, 1].into_iter().map(|x| Rational64::from_integer(x)).collect());
let mut r = f.clone();
let q = r.division(&g);
assert_eq!(f, q * g + r);
let f = Polynomial::new(vec![3, 1, 4, 1, 5].into_iter().map(|x| rug::Rational::from(x)).collect());
let g = Polynomial::new(vec![2, 7, 1].into_iter().map(|x| rug::Rational::from(x)).collect());
let mut r = f.clone();
let q = r.division(&g);
assert_eq!(f, q * g + r);

The Add, Sub, Mul, Div, and Rem traits are implemented for polynomials. Polynomials also support computing derivative, square free, pseudo division, and resultant.

Licence

AGPL-3.0-or-later

Commit count: 83

cargo fmt