| Crates.io | poulpy-core |
| lib.rs | poulpy-core |
| version | 0.4.1 |
| created_at | 2025-08-17 12:53:48.95446+00 |
| updated_at | 2025-11-21 16:38:23.782598+00 |
| description | A backend agnostic crate implementing RLWE-based encryption & arithmetic. |
| homepage | https://github.com/phantomzone-org/poulpy |
| repository | https://github.com/phantomzone-org/poulpy |
| max_upload_size | |
| id | 1799388 |
| size | 752,177 |
Poulpy-Core is a Rust crate built on poulpy-hal, providing scheme- and backend-agnostic RLWE-based homomorphic encryption building blocks.
use poulpy_core::{
GLWESub, SIGMA,
layouts::{
Base2K, Degree, GLWE, GLWELayout, GLWEPlaintext, GLWEPlaintextLayout, GLWESecret, LWEInfos, Rank, TorusPrecision,
prepared::GLWESecretPrepared,
},
};
use poulpy_cpu_ref::FFT64Ref;
use poulpy_hal::{
api::{ModuleNew, ScratchOwnedAlloc, ScratchOwnedBorrow, VecZnxFillUniform},
layouts::{Module, ScratchOwned},
source::Source,
};
fn main() {
// Ring degree
let log_n: usize = 10;
let n: Degree = Degree(1 << log_n);
// Base-2-k (implicit digit decomposition)
let base2k: Base2K = Base2K(14);
// Ciphertext Torus precision (equivalent to ciphertext modulus)
let k_ct: TorusPrecision = TorusPrecision(27);
// Plaintext Torus precision (equivament to plaintext modulus)
let k_pt: TorusPrecision = TorusPrecision(base2k.into());
// GLWE rank
let rank: Rank = Rank(1);
// Instantiate Module (DFT Tables)
let module: Module<FFT64Ref> = Module::<FFT64Ref>::new(n.0 as u64);
let glwe_ct_infos: GLWELayout = GLWELayout {
n,
base2k,
k: k_ct,
rank,
};
let glwe_pt_infos: GLWEPlaintextLayout = GLWEPlaintextLayout { n, base2k, k: k_pt };
// Allocates ciphertext & plaintexts
let mut ct: GLWE<Vec<u8>> = GLWE::alloc_from_infos(&glwe_ct_infos);
let mut pt_want: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc_from_infos(&glwe_pt_infos);
let mut pt_have: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc_from_infos(&glwe_pt_infos);
// CPRNG
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([1u8; 32]);
let mut source_xa: Source = Source::new([2u8; 32]);
// Scratch space
let mut scratch: ScratchOwned<FFT64Ref> = ScratchOwned::alloc(
GLWE::encrypt_sk_tmp_bytes(&module, &glwe_ct_infos) | GLWE::decrypt_tmp_bytes(&module, &glwe_ct_infos),
);
// Generate secret-key
let mut sk: GLWESecret<Vec<u8>> = GLWESecret::alloc_from_infos(&glwe_ct_infos);
sk.fill_ternary_prob(0.5, &mut source_xs);
// Backend-prepared secret
let mut sk_prepared: GLWESecretPrepared<Vec<u8>, FFT64Ref> = GLWESecretPrepared::alloc(&module, rank);
sk_prepared.prepare(&module, &sk);
// Uniform plaintext
module.vec_znx_fill_uniform(base2k.into(), &mut pt_want.data, 0, &mut source_xa);
// Encryption
ct.encrypt_sk(
&module,
&pt_want,
&sk_prepared,
&mut source_xa,
&mut source_xe,
scratch.borrow(),
);
// Decryption
ct.decrypt(&module, &mut pt_have, &sk_prepared, scratch.borrow());
// Diff between pt - Dec(Enc(pt))
module.glwe_sub_inplace(&mut pt_want, &pt_have);
// Ideal vs. actual noise
let noise_have: f64 = pt_want.data.stats(base2k.into(), 0).std() * (ct.k().as_u32() as f64).exp2();
let noise_want: f64 = SIGMA;
// Check
assert!(noise_have <= noise_want + 0.2);
}
This crate defines three categories of layouts for LWE, GLWE, GGLWE, and GGSW objects (and their derivatives), all instantiated using poulpy-hal layouts. Each serves a distinct purpose:
GGLWEAutomorphismKey).GGLWEAutomorphismKeyCompressed).GGLWEAutomorphismKeyPrepared).All standard and compressed layouts implement the WriterTo and ReaderFrom traits, enabling straightforward serialization/deserialization with any type implementing Write or Read:
pub trait WriterTo {
fn write_to<W: Write>(&self, writer: &mut W) -> Result<()>;
}
pub trait ReaderFrom {
fn read_from<R: Read>(&mut self, reader: &mut R) -> Result<()>;
}
flowchart TD
A[GGLWEAutomorphismKeyCompressed]-->|decompress|B[GGLWEAutomorphismKey]-->|prepare|C[GGLWEAutomorphismKeyPrepared]
Equivalent Rust:
let mut atk_compressed: GGLWEAutomorphismKeyCompressed<Vec<u8>> =
GGLWEAutomorphismKeyCompressed::alloc(...);
let mut atk: GGLWEAutomorphismKey<Vec<u8>> =
GGLWEAutomorphismKey::alloc(...);
atk.decompress(module, &atk_compressed);
let mut atk_prep: GGLWEAutomorphismKeyPrepared<Vec<u8>, B> = GLWESecretPrepared<Vec<u8>, B> = atk.prepare_alloc(...);
LWECiphertext and GLWECiphertext.
However, it remains naturally usable on GGLWE and GGSW objects, since these are vectors/matrices of GLWECiphertext.let mut atk: GGLWEAutomorphismKey<Vec<u8>> =
GGLWEAutomorphismKey::alloc(...);
atk.encrypt_sk(...);
atk.at(row, 0).decrypt(...);
Keyswitching, automorphisms, and external products are supported for all ciphertext types where they are well-defined.
This includes subtypes such as GGLWEAutomorphismKey.
For example:
atk.external_product(...);
ggsw.automorphism(...);
LWE and GLWEGLWE ring packingGLWE traceGLWE, GGLWE, GGSWGLWE ciphertexts and plaintextsA fully generic test suite is available in src/tests/test_suite.