| Crates.io | pqc-binary-format |
| lib.rs | pqc-binary-format |
| version | 1.0.14 |
| created_at | 2026-01-10 00:35:51.772282+00 |
| updated_at | 2026-01-18 02:45:38.689031+00 |
| description | Standardized binary format for post-quantum cryptography encrypted data interchange |
| homepage | https://pqcrypta.com |
| repository | https://github.com/PQCrypta/pqcrypta-community |
| max_upload_size | |
| id | 2033244 |
| size | 308,799 |
A standardized, self-describing binary format for post-quantum cryptography encrypted data interchange.
Post-quantum cryptography (PQC) implementations suffer from the "Babel Tower problem": different implementations cannot interoperate because there is no standardized format for encrypted data. Each library uses its own proprietary format, making cross-platform and cross-language encryption impossible.
PQC Binary Format provides a universal, algorithm-agnostic format that:
Add to your Cargo.toml:
[dependencies]
pqc-binary-format = "1.0"
use pqc_binary_format::{PqcBinaryFormat, Algorithm, PqcMetadata, EncParameters};
use std::collections::HashMap;
// Create metadata with encryption parameters
let metadata = PqcMetadata {
enc_params: EncParameters {
iv: vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], // 12-byte nonce
tag: vec![0; 16], // 16-byte auth tag
params: HashMap::new(),
},
..Default::default()
};
// Create encrypted data container
let encrypted_data = vec![1, 2, 3, 4, 5]; // Your encrypted bytes
let format = PqcBinaryFormat::new(Algorithm::Hybrid, metadata, encrypted_data);
// Serialize to bytes (for transmission or storage)
let bytes = format.to_bytes().unwrap();
// Deserialize from bytes (includes automatic checksum verification)
let recovered = PqcBinaryFormat::from_bytes(&bytes).unwrap();
assert_eq!(format, recovered);
println!("Algorithm: {}", recovered.algorithm().name());
Install the Python bindings:
cd bindings/python
pip install maturin
maturin develop --release
from pqc_binary_format import Algorithm, EncParameters, PqcMetadata, PqcBinaryFormat
# Create algorithm and metadata
algorithm = Algorithm("hybrid")
enc_params = EncParameters(
iv=bytes([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]),
tag=bytes([0] * 16)
)
metadata = PqcMetadata(enc_params=enc_params, kem_params=None, sig_params=None, compression_params=None)
# Create and serialize format
pqc_format = PqcBinaryFormat(algorithm, metadata, bytes([1, 2, 3, 4, 5]))
serialized = pqc_format.to_bytes()
# Deserialize and verify
deserialized = PqcBinaryFormat.from_bytes(serialized)
deserialized.validate() # Verify checksum integrity
print(f"Algorithm: {deserialized.algorithm.name}")
Build the WebAssembly bindings:
cd bindings/javascript
npm install
npm run build
import init, { WasmAlgorithm, WasmEncParameters, WasmPqcMetadata, WasmPqcBinaryFormat } from './pqc_binary_format.js';
await init();
const algorithm = new WasmAlgorithm('hybrid');
const encParams = new WasmEncParameters(
new Uint8Array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]),
new Uint8Array(16)
);
const metadata = new WasmPqcMetadata(encParams);
const pqcFormat = new WasmPqcBinaryFormat(algorithm, metadata, new Uint8Array([1, 2, 3, 4, 5]));
const serialized = pqcFormat.toBytes();
const deserialized = WasmPqcBinaryFormat.fromBytes(serialized);
console.log(`Algorithm: ${deserialized.algorithm.name}`);
Build the Rust library first, then use the Go bindings:
cargo build --release
cd bindings/go
go build example.go
package main
import (
"fmt"
"log"
pqc "github.com/PQCrypta/pqcrypta-community/bindings/go"
)
func main() {
iv := []byte{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
tag := make([]byte, 16)
data := []byte{1, 2, 3, 4, 5}
format, err := pqc.NewPqcBinaryFormat(pqc.AlgorithmHybrid, iv, tag, data)
if err != nil {
log.Fatal(err)
}
defer format.Free()
serialized, _ := format.ToBytes()
deserialized, _ := pqc.FromBytes(serialized)
defer deserialized.Free()
fmt.Printf("Algorithm: %s\n", deserialized.GetAlgorithmName())
}
Build the Rust library and generate the C header:
cargo build --release
cbindgen --config cbindgen.toml --output include/pqc_binary_format.h
cd bindings/c-cpp
make
#include "pqc_binary_format.h"
#include <iostream>
#include <vector>
int main() {
std::vector<uint8_t> iv = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};
std::vector<uint8_t> tag(16, 0);
std::vector<uint8_t> data = {1, 2, 3, 4, 5};
PqcFormatHandle* format = pqc_format_new(
PQC_ALGORITHM_HYBRID,
iv.data(), iv.size(),
tag.data(), tag.size(),
data.data(), data.size()
);
ByteBuffer serialized = pqc_format_to_bytes(format);
PqcFormatHandle* deserialized = pqc_format_from_bytes(serialized.data, serialized.len);
char* alg_name = pqc_format_get_algorithm_name(deserialized);
std::cout << "Algorithm: " << alg_name << std::endl;
pqc_free_string(alg_name);
pqc_free_buffer(serialized);
pqc_format_free(deserialized);
pqc_format_free(format);
return 0;
}
PQC Binary Format provides production-ready, fully tested bindings for multiple programming languages. All bindings support the complete API and produce cross-compatible binary formats.
| Language | Status | Package | Documentation | Examples |
|---|---|---|---|---|
| Rust | โ Native | pqc-binary-format |
docs.rs | 3 examples |
| Python | โ Tested | pqc_binary_format |
Python README | 2 examples |
| JavaScript/WASM | โ Tested | pqc_binary_format (npm) |
JS README | 1 example |
| Go | โ Tested | github.com/PQCrypta/pqcrypta-community/bindings/go |
pkg.go.dev | 1 example |
| C | โ Tested | FFI via Rust | C/C++ README | 1 example |
| C++ | โ Tested | FFI via Rust | C/C++ README | 1 example |
# Rust
cargo add pqc-binary-format
# Python (via maturin)
python3 -m venv .venv && source .venv/bin/activate
pip install maturin
maturin develop --release
# JavaScript/WASM (via wasm-pack)
wasm-pack build --target web --features wasm
# Go
go get github.com/PQCrypta/pqcrypta-community/bindings/go
# C/C++ (build from source)
cargo build --release --no-default-features
# Link against target/release/libpqc_binary_format.so
All language bindings are fully interoperable! You can:
Example workflow:
# Create encrypted data with Python
python3 examples/python/basic_usage.py > data.bin
# Verify with C++
LD_LIBRARY_PATH=target/release ./examples/cpp/basic_usage < data.bin
# Process with Go
cd examples/go && go run basic_usage.go < ../../data.bin
All bindings support:
| Platform | Status | Notes |
|---|---|---|
| crates.io (Rust) | โ Published | v1.0.14 live! |
| PyPI (Python) | โ Published | v1.0.14 live! |
| npm (JavaScript) | โ Published | v1.0.14 live! |
| pkg.go.dev (Go) | โ Indexed | v1.0.14 live! |
+-------------------+
| Magic (4 bytes) | "PQC\x01" - Format identifier
+-------------------+
| Version (1 byte) | 0x01 - Format version
+-------------------+
| Algorithm (2 bytes)| Algorithm identifier (0x0050 - 0x0905)
+-------------------+
| Flags (1 byte) | Feature flags (compression, streaming, etc.)
+-------------------+
| Metadata Len (4) | Length of metadata section
+-------------------+
| Data Len (8) | Length of encrypted payload
+-------------------+
| Metadata (var) | Algorithm-specific parameters
+-------------------+
| Data (var) | Encrypted data
+-------------------+
| Checksum (32) | SHA-256 integrity checksum
+-------------------+
The format supports 47 cryptographic algorithm identifiers:
High-security configurations for enterprise use
Falcon-based signature algorithms
Research and next-generation algorithms
NIST 2025 Backup KEM standard - code-based cryptography
Control optional behavior with feature flags:
use pqc_binary_format::{PqcBinaryFormat, Algorithm, FormatFlags, PqcMetadata, EncParameters};
use std::collections::HashMap;
let flags = FormatFlags::new()
.with_compression() // Data was compressed before encryption
.with_streaming() // Streaming encryption mode
.with_additional_auth(); // Additional authentication layer
let metadata = PqcMetadata {
enc_params: EncParameters {
iv: vec![1; 12],
tag: vec![1; 16],
params: HashMap::new(),
},
..Default::default()
};
let format = PqcBinaryFormat::with_flags(
Algorithm::QuadLayer,
flags,
metadata,
vec![1, 2, 3],
);
assert!(format.flags().has_compression());
assert!(format.flags().has_streaming());
The format includes rich metadata for decryption:
use pqc_binary_format::{PqcMetadata, KemParameters, SigParameters, EncParameters, CompressionParameters};
use std::collections::HashMap;
let metadata = PqcMetadata {
// Key Encapsulation (optional)
kem_params: Some(KemParameters {
public_key: vec![/* ML-KEM public key */],
ciphertext: vec![/* encapsulated key */],
params: HashMap::new(),
}),
// Digital Signature (optional)
sig_params: Some(SigParameters {
public_key: vec![/* ML-DSA public key */],
signature: vec![/* signature bytes */],
params: HashMap::new(),
}),
// Symmetric Encryption (required)
enc_params: EncParameters {
iv: vec![1; 12], // Nonce/IV
tag: vec![1; 16], // AEAD auth tag
params: HashMap::new(),
},
// Compression (optional)
compression_params: Some(CompressionParameters {
algorithm: "zstd".to_string(),
level: 3,
original_size: 1024,
params: HashMap::new(),
}),
// Custom parameters (extensible)
custom: HashMap::new(),
};
Add your own metadata:
use pqc_binary_format::PqcMetadata;
let mut metadata = PqcMetadata::new();
metadata.add_custom("my_param".to_string(), vec![1, 2, 3]);
// Later...
if let Some(value) = metadata.get_custom("my_param") {
println!("Custom param: {:?}", value);
}
Every format includes a SHA-256 checksum calculated over all fields:
use pqc_binary_format::PqcBinaryFormat;
let bytes = format.to_bytes().unwrap();
// Tamper with the data
// let mut corrupted = bytes.clone();
// corrupted[50] ^= 0xFF;
// Deserialization automatically verifies checksum
match PqcBinaryFormat::from_bytes(&bytes) {
Ok(format) => println!("โ Checksum valid"),
Err(e) => println!("โ Checksum failed: {}", e),
}
use pqc_binary_format::{PqcBinaryFormat, Algorithm, PqcMetadata, EncParameters};
use std::collections::HashMap;
fn main() {
let metadata = PqcMetadata {
enc_params: EncParameters {
iv: vec![1; 12],
tag: vec![1; 16],
params: HashMap::new(),
},
..Default::default()
};
let format = PqcBinaryFormat::new(
Algorithm::Hybrid,
metadata,
vec![/* your encrypted data */],
);
// Save to file
let bytes = format.to_bytes().unwrap();
std::fs::write("encrypted.pqc", &bytes).unwrap();
// Load from file
let loaded_bytes = std::fs::read("encrypted.pqc").unwrap();
let loaded = PqcBinaryFormat::from_bytes(&loaded_bytes).unwrap();
println!("Algorithm: {}", loaded.algorithm().name());
}
Rust (Encryption)
let format = PqcBinaryFormat::new(Algorithm::PostQuantum, metadata, data);
let bytes = format.to_bytes().unwrap();
// Send bytes to Python/JavaScript/Go/C++
Python (Decryption)
from pqc_binary_format import PqcBinaryFormat
format = PqcBinaryFormat.from_bytes(bytes)
print(f"Algorithm: {format.algorithm().name()}")
print(f"Data: {len(format.data())} bytes")
JavaScript (Decryption)
const format = WasmPqcBinaryFormat.fromBytes(bytes);
console.log(`Algorithm: ${format.algorithm.name}`);
console.log(`Data: ${format.data.length} bytes`);
Go (Decryption)
format, _ := pqc.FromBytes(bytes)
defer format.Free()
fmt.Printf("Algorithm: %s\n", format.GetAlgorithmName())
fmt.Printf("Data: %d bytes\n", len(format.GetData()))
// Old data encrypted with Classical algorithm
let old_format = PqcBinaryFormat::from_bytes(&old_encrypted_data)?;
assert_eq!(old_format.algorithm(), Algorithm::Classical);
// Re-encrypt with Post-Quantum algorithm
let plaintext = decrypt_with_classical(&old_format)?;
let new_metadata = create_pq_metadata()?;
let new_format = PqcBinaryFormat::new(
Algorithm::PostQuantum,
new_metadata,
encrypt_with_pq(&plaintext)?,
);
// Same format, different algorithm!
Encrypt in Rust, decrypt in Python, JavaScript, or Go using the same format.
Self-describing format ensures data can be decrypted decades later even as algorithms evolve.
Switch between algorithms without changing application code.
Embedded metadata provides audit trail for regulatory compliance (GDPR, HIPAA, etc.).
Standardized format enables fair comparison of PQC algorithm performance.
# Run tests
cargo test
# Run tests with output
cargo test -- --nocapture
# Run specific test
cargo test test_binary_format_roundtrip
# Run benchmarks
cargo bench
# View benchmark results
open target/criterion/report/index.html
Performance characteristics:
git clone https://github.com/PQCrypta/pqcrypta-community.git
cd pqcrypta-community
cargo build --release
cargo run --example basic_usage
cargo run --example with_compression
cargo run --example cross_platform
We welcome contributions! See CONTRIBUTING.md for guidelines.
Licensed under either of:
at your option.
This format was developed as part of the PQCrypta enterprise post-quantum cryptography platform. Special thanks to:
Made with โค๏ธ by the PQCrypta Community
Securing the future, one byte at a time.