Crates.io | programinduction |
lib.rs | programinduction |
version | 0.9.0 |
source | src |
created_at | 2018-03-12 21:05:42.68091 |
updated_at | 2023-12-18 13:52:20.917365 |
description | A library for program induction and learning representations. |
homepage | https://github.com/lorepozo/program-induction |
repository | https://github.com/lorepozo/program-induction |
max_upload_size | |
id | 55227 |
size | 591,206 |
A library for program induction and learning representations.
Implements Bayesian program learning and genetic programming. See the docs for more information.
Install rust and ensure you're up to date (rustup update
).
In a new or existing project, add the following to your Cargo.toml
:
[dependencies]
programinduction = "0.9"
# many examples also depend on polytype for the tp! and ptp! macros:
polytype = "7.0"
The documentation requires a custom HTML header to include KaTeX for math
support. This isn't supported by cargo doc
, so to build the documentation
you may use:
cargo rustdoc -- --html-in-header rustdoc-include-katex-header.html
Specify a probabilistic context-free grammar (PCFG; see pcfg::Grammar
) and
induce a sentence that matches an example:
use polytype::tp;
use programinduction::pcfg::{task_by_evaluation, Grammar, Rule};
use programinduction::{ECParams, EC};
fn evaluate(name: &str, inps: &[i32]) -> Result<i32, ()> {
match name {
"0" => Ok(0),
"1" => Ok(1),
"plus" => Ok(inps[0] + inps[1]),
_ => unreachable!(),
}
}
fn main() {
let g = Grammar::new(
tp!(EXPR),
vec![
Rule::new("0", tp!(EXPR), 1.0),
Rule::new("1", tp!(EXPR), 1.0),
Rule::new("plus", tp!(@arrow[tp!(EXPR), tp!(EXPR), tp!(EXPR)]), 1.0),
],
);
let ec_params = ECParams {
frontier_limit: 1,
search_limit_timeout: None,
search_limit_description_length: Some(8.0),
};
// task: the number 4
let task = task_by_evaluation(&evaluate, &4, tp!(EXPR));
let frontiers = g.explore(&ec_params, &[task]);
let sol = &frontiers[0].best_solution().unwrap().0;
println!("{}", g.display(sol));
}
The Exploration-Compression (EC) algorithm iteratively learns a better
representation by finding common structure in induced programs. We can run
the EC algorithm with a polymorphically-typed lambda calculus representation
lambda::Language
in a Boolean circuit domain:
use polytype::{ptp, tp};
use programinduction::{domains, lambda, ECParams, EC};
fn main() {
// circuit DSL
let dsl = lambda::Language::uniform(vec![
// NAND takes two bools and returns a bool
("nand", ptp!(@arrow[tp!(bool), tp!(bool), tp!(bool)])),
]);
// parameters
let lambda_params = lambda::CompressionParams::default();
let ec_params = ECParams {
frontier_limit: 1,
search_limit_timeout: Some(std::time::Duration::new(1, 0)),
search_limit_description_length: None,
};
// randomly sample 250 circuit tasks
let rng = &mut rand::thread_rng();
let tasks = domains::circuits::make_tasks(rng, 250);
// one iteration of EC:
let (new_dsl, _solutions) = dsl.ec(&ec_params, &lambda_params, &tasks);
// print the new concepts it invented, based on common structure:
for (expr, _, _) in &new_dsl.invented {
println!("invented {}", new_dsl.display(expr))
// one of the inventions was "(λ (nand $0 $0))",
// which is the common and useful NOT operation!
}
}
You may have noted the above use of domains::circuits
. Some domains are
already implemented for you. Currently, this only consists of circuits and
strings.
(you could be the one who does one of these!)
domains::strings
domains::strings
handles slice
).impl GP for pcfg::Grammar
is not yet complete.f
gets enumerated instead of (λ (f $0))
)&'static str
-named Type
/TypeScheme
.lambda
representation.EC
or GP
)