Crates.io | pyrus-nn |
lib.rs | pyrus-nn |
version | 0.2.1 |
source | src |
created_at | 2019-04-07 17:33:49.532202 |
updated_at | 2019-04-23 18:31:10.43649 |
description | Micro Neural Network framework |
homepage | |
repository | https://github.com/milesgranger/pyrus-nn |
max_upload_size | |
id | 126391 |
size | 58,872 |
Lightweight neural network framework written in Rust, with thin python bindings.
Features:
network.to_dict()
& Sequential.from_dict()
Draw backs:
Python:
pip install pyrus-nn # Has ZERO dependencies!
Rust:
[dependencies]
pyrus-nn = "0.2.0"
from pyrus_nn.models import Sequential
from pyrus_nn.layers import Dense
model = Sequential(lr=0.001, n_epochs=10)
model.add(Dense(n_input=12, n_output=24, activation='sigmoid'))
model.add(Dense(n_input=24, n_output=1, activation='sigmoid'))
# Create some X and y, each of which must be 2d
X = [list(range(12)) for _ in range(10)]
y = [[i] for i in range(10)]
model.fit(X, y)
out = model.predict(X)
use ndarray::Array2;
use pyrus_nn::{network::Sequential, layers::Dense};
// Network with 4 inputs and 1 output.
fn main() {
let mut network = Sequential::new(0.001, 100, 32, CostFunc::CrossEntropy);
assert!(
network.add(Dense::new(4, 5)).is_ok()
);
assert!(
network.add(Dense::new(5, 6)).is_ok()
);
assert!(
network.add(Dense::new(6, 4)).is_ok()
);
assert!(
network.add(Dense::new(4, 1)).is_ok()
);
let X: Array2<f32> = ...
let y: Array2<f32> = ...
network.fit(X.view(), y.view());
let yhat: Array2<f32> = network.predict(another_x.view());
}