Crates.io | quantrs2-ml |
lib.rs | quantrs2-ml |
version | 0.1.0-alpha.5 |
created_at | 2025-05-15 02:05:12.257758+00 |
updated_at | 2025-06-17 11:56:39.13543+00 |
description | Quantum Machine Learning module for QuantRS2 |
homepage | |
repository | https://github.com/cool-japan/quantrs |
max_upload_size | |
id | 1674239 |
size | 3,546,080 |
QuantRS2-ML is the comprehensive quantum machine learning library of the QuantRS2 quantum computing framework, providing cutting-edge quantum algorithms, hybrid architectures, and industry-specific applications for next-generation artificial intelligence and data science.
The quantrs2-ml
crate is included in the main QuantRS2 workspace. To use it in your project:
[dependencies]
quantrs2-ml = "0.1.0-alpha.5"
use quantrs2_ml::prelude::*;
use quantrs2_ml::qnn::{QuantumNeuralNetwork, QNNLayer};
// Create a QNN with a custom architecture
let layers = vec![
QNNLayer::EncodingLayer { num_features: 4 },
QNNLayer::VariationalLayer { num_params: 18 },
QNNLayer::EntanglementLayer { connectivity: "full".to_string() },
QNNLayer::VariationalLayer { num_params: 18 },
QNNLayer::MeasurementLayer { measurement_basis: "computational".to_string() },
];
let qnn = QuantumNeuralNetwork::new(
layers,
6, // 6 qubits
4, // 4 input features
2, // 2 output classes
)?;
// Train on data
let optimizer = Optimizer::Adam { learning_rate: 0.01 };
let result = qnn.train(&x_train, &y_train, optimizer, 100)?;
use quantrs2_ml::prelude::*;
use quantrs2_ml::hep::{HEPQuantumClassifier, HEPEncodingMethod};
// Create a classifier for HEP data
let classifier = HEPQuantumClassifier::new(
8, // 8 qubits
10, // 10 features
2, // binary classification
HEPEncodingMethod::HybridEncoding,
vec!["background".to_string(), "signal".to_string()],
)?;
// Train and evaluate
let training_result = classifier.train(&train_data, &train_labels, 100, 0.01)?;
let metrics = classifier.evaluate(&test_data, &test_labels)?;
println!("Test accuracy: {:.2}%", metrics.accuracy * 100.0);
use quantrs2_ml::prelude::*;
use quantrs2_ml::gan::{QuantumGAN, GeneratorType, DiscriminatorType};
// Create a quantum GAN
let qgan = QuantumGAN::new(
6, // 6 qubits for generator
6, // 6 qubits for discriminator
4, // 4D latent space
8, // 8D data space
GeneratorType::HybridClassicalQuantum,
DiscriminatorType::HybridQuantumFeatures,
)?;
// Train on data
let history = qgan.train(
&real_data,
50, // epochs
16, // batch size
0.01, // generator learning rate
0.01, // discriminator learning rate
1, // discriminator steps per generator step
)?;
// Generate new samples
let generated_samples = qgan.generate(10)?;
use quantrs2_ml::prelude::*;
use quantrs2_ml::crypto::{QuantumKeyDistribution, ProtocolType};
// Create a BB84 quantum key distribution protocol
let mut qkd = QuantumKeyDistribution::new(ProtocolType::BB84, 1000)
.with_error_rate(0.03);
// Distribute a key
let key_length = qkd.distribute_key()?;
println!("Generated key of length: {} bits", key_length);
// Verify that Alice and Bob have the same key
if qkd.verify_keys() {
println!("Key distribution successful!");
}
The quantrs2-ml
crate supports GPU acceleration for quantum machine learning tasks through the gpu
feature:
[dependencies]
quantrs2-ml = { version = "0.1.0-alpha.3", features = ["gpu"] }
This project is licensed under either of:
at your option.