realitydefender

Crates.iorealitydefender
lib.rsrealitydefender
version0.1.8
created_at2025-05-29 19:40:05.233106+00
updated_at2025-11-04 20:58:50.978623+00
descriptionReality Defender SDK for Rust - Tools for detecting deepfakes and manipulated media
homepagehttps://realitydefender.com
repositoryhttps://github.com/Reality-Defender/realitydefender-sdk-rust
max_upload_size
id1694240
size197,324
Manuel Abeledo (mabeledo)

documentation

https://github.com/Reality-Defender/realitydefender-sdk-rust

README

Reality Defender Rust SDK

codecov

The Reality Defender Rust SDK provides a simple and efficient way to integrate deepfake detection capabilities into your Rust applications.

Features

  • Asynchronous API built on Tokio
  • Type-safe interfaces with Serde for serialization
  • Secure file uploads using presigned URLs
  • Comprehensive error handling
  • High test coverage

Installation

Add the SDK and Tokio with the full feature set to your Cargo.toml:

cargo add realitydefender
cargo add tokio --features full

Usage

Basic Example

use realitydefender::{Client, Config, UploadOptions};
use std::env;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Initialize the client with your API key
    let client = Client::new(Config {
        api_key: env::var("REALITY_DEFENDER_API_KEY")?,
        ..Default::default()
    })?;

    // Upload a file for analysis
    let upload_result = client.upload(UploadOptions {
        file_path: "./image.jpg".to_string(),
    }).await?;

    println!("Request ID: {}", upload_result.request_id);

    // Get the analysis result with waiting for completion
    let result = client.get_result(
        &upload_result.request_id,
        Some(realitydefender::GetResultOptions {
            max_attempts: Some(30),
            polling_interval: Some(2000),
        }),
    ).await?;

    println!("Status: {}", result.status);
    if let Some(score) = result.score {
        println!("Score: {:.4} ({:.1}%)", score, score * 100.0);
    }

    // Access model-specific results
    for model in result.models {
        if model.status != "NOT_APPLICABLE" {
            println!(
                "Model: {}, Status: {}, Score: {:.4}",
                model.name,
                model.status,
                model.score.unwrap_or(0.0)
            );
        }
    }

    Ok(())
}

Processing Multiple Files

use realitydefender::{Client, Config, BatchOptions};
use std::env;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Initialize the client
    let client = Client::new(Config {
        api_key: env::var("REALITY_DEFENDER_API_KEY")?,
        ..Default::default()
    })?;

    // Process multiple files concurrently
    let results = client.process_batch(
        vec!["./files/image1.jpg", "./files/image2.jpg", "./files/video.mp4"],
        BatchOptions {
            max_concurrency: Some(3),
            max_attempts: Some(60),
            polling_interval: Some(2000),
        }
    ).await?;

    // Print results
    for (idx, result) in results.iter().enumerate() {
        println!("File {}: Status: {}", idx + 1, result.status);
        if let Some(score) = result.score {
            println!("  Score: {:.4} ({:.1}%)", score, score * 100.0);
        }
    }

    Ok(())
}

Simplified Detection

use realitydefender::{Client, Config};
use std::env;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Initialize the client
    let client = Client::new(Config {
        api_key: env::var("REALITY_DEFENDER_API_KEY")?,
        ..Default::default()
    })?;

    // Detect a file with a single call
    let result = client.detect_file("./files/image.jpg").await?;

    println!("Status: {}", result.status);
    if let Some(score) = result.score {
        println!("Score: {:.4} ({:.1}%)", score, score * 100.0);
    }

    Ok(())
}

Supported file types and size limits

There is a size limit for each of the supported file types.

File Type Extensions Size Limit (bytes) Size Limit (MB)
Video .mp4, .mov 262,144,000 250 MB
Image .jpg, .png, .jpeg, .gif, .webp 52,428,800 50 MB
Audio .flac, .wav, .mp3, .m4a, .aac, .alac, .ogg 20,971,520 20 MB
Text .txt 5,242,880 5 MB

Supported social media platforms

The Reality Defender API supports analysis of media from the following social media platforms:

  • Facebook
  • Instagram
  • Twitter
  • YouTube
  • TikTok

Running the Examples

The SDK comes with several examples that demonstrate how to use its features. To run these examples, you need to set your API key as an environment variable:

export REALITY_DEFENDER_API_KEY=your_api_key_here

Then, you can run the examples using Cargo:

# Run the basic example
cargo run --example basic

# Run the batch processing example
cargo run --example batch_processing

# Run the social media example
cargo run --example social_media

Required Test Files

To run the examples that require uploading local files successfully, you'll need to add your own image and video files to the files directory:

  1. Create an files directory in the root of the project (if it doesn't already exist):

    mkdir -p files
    
  2. Add the following files to this directory:

    • image1.jpg - Any sample image for testing image analysis
    • image2.jpg - Another sample image
    • test_image.jpg - A third test image
    • video1.mp4 - A sample video file for testing video analysis

You can use any JPG files and MP4 videos for testing purposes. The examples are configured to use these specific filenames from the files directory:

// Using the sample files in your code
let result = client.detect_file("./files/image1.jpg").await?;

// For batch processing
let results = client.process_batch(
vec!["./files/image1.jpg", "./files/image2.jpg", "./files/video1.mp4"],
BatchOptions::default ()
).await?;

Note: If you prefer to use different filenames or paths, make sure to update the example code accordingly.

How It Works

The SDK implements the following workflow:

  1. Authentication: Uses your API key to authenticate all requests to the Reality Defender API.
  2. File Upload:
    • Requests a presigned URL from the Reality Defender API
    • Uploads the file directly to the storage provider using the presigned URL
    • Returns a request ID for tracking the analysis
  3. Result Retrieval:
    • Polls the API for results using the request ID
    • Optionally waits until the analysis is complete
    • Returns detailed analysis results including overall and model-specific scores

API Reference

See the documentation for complete API details.

Development

Prerequisites

  • Rust 1.56 or later
  • Cargo

Setup

  1. Clone the repository
  2. Install dependencies:
cargo build

Running Tests

cargo test

Running with Coverage

cargo install cargo-tarpaulin
cargo tarpaulin --out Xml
Commit count: 0

cargo fmt