| Crates.io | ringkernel-procint |
| lib.rs | ringkernel-procint |
| version | 0.4.0 |
| created_at | 2025-12-04 15:37:49.62353+00 |
| updated_at | 2026-01-25 21:29:50.631652+00 |
| description | GPU-accelerated process intelligence with real-time DFG visualization and pattern detection |
| homepage | |
| repository | https://github.com/mivertowski/RustCompute |
| max_upload_size | |
| id | 1966623 |
| size | 529,001 |
GPU-accelerated process intelligence and mining for RingKernel.
┌─────────────────┐ ┌──────────────────┐ ┌────────────────┐
│ Data Fabric │────▶│ GPU Kernels │────▶│ Visualization │
│ (Event Stream) │ │ (CUDA/CPU) │ │ (egui Canvas) │
└─────────────────┘ └──────────────────┘ └────────────────┘
│ │ │
▼ ▼ ▼
┌─────────────────┐ ┌──────────────────┐ ┌────────────────┐
│ Sector Templates│ │ DFG Construction │ │ Force Layout │
│ Event Generator │ │ Pattern Detection│ │ Token Animation│
│ Anomaly Inject │ │ Conformance Check│ │ Timeline View │
└─────────────────┘ └──────────────────┘ └────────────────┘
Four industry-specific process templates with realistic transition probabilities:
Builds Directly-Follows Graphs from event streams:
Identifies process anti-patterns:
Derives concurrency relationships:
Validates traces against reference models:
use ringkernel_procint::prelude::*;
// Create event generator for healthcare sector
let config = GeneratorConfig::default();
let mut generator = ProcessEventGenerator::new(
SectorTemplate::Healthcare(HealthcareConfig::default()),
config,
);
// Generate events and build DFG
let events = generator.generate_batch(1000);
let mut kernel = DfgConstructionKernel::new(64).with_cpu_only();
let result = kernel.process(&events);
// Detect patterns
let mut pattern_kernel = PatternDetectionKernel::new(PatternConfig::default());
let patterns = pattern_kernel.detect(result.dfg.nodes());
# CPU-only mode (default)
cargo run -p ringkernel-procint --bin procint --release
# With CUDA GPU acceleration (requires NVIDIA GPU + CUDA toolkit)
cargo run -p ringkernel-procint --bin procint --release --features cuda
# CPU benchmark
cargo run -p ringkernel-procint --bin procint-benchmark --release
# GPU benchmark (requires CUDA)
cargo run -p ringkernel-procint --bin procint-benchmark --release --features cuda
All structures are cache-line aligned for optimal GPU memory access:
| Structure | Size | Description |
|---|---|---|
| GpuObjectEvent | 128 bytes | Process event with HLC timestamp |
| GpuDFGNode | 64 bytes | Activity node with statistics |
| GpuDFGEdge | 64 bytes | Transition edge with frequency |
| GpuDFGGraph | 128 bytes | Graph header/metadata |
| GpuPartialOrderTrace | 256 bytes | Trace with 16x16 precedence matrix |
| GpuPatternMatch | 64 bytes | Detected pattern instance |
| GpuProcessTrace | 64 bytes | Compact trace representation |
[features]
default = []
cuda = ["ringkernel-cuda", "ringkernel-cuda-codegen", "cudarc"]
ringkernel-core - Core actor runtimeeframe/egui - GUI frameworkrkyv - Zero-copy serializationrand/rand_distr - Random number generationApache-2.0