| Crates.io | rl-bandit |
| lib.rs | rl-bandit |
| version | 1.0.2 |
| created_at | 2020-09-14 22:10:09.159533+00 |
| updated_at | 2020-09-14 22:13:44.599394+00 |
| description | A simple multi-armed bandit implementation |
| homepage | |
| repository | https://gitlab.com/librallu/rl-bandit |
| max_upload_size | |
| id | 288748 |
| size | 56,763 |
Simple multi-armed bandit algorithm implementation.
Implements several bandit algorithms (most of them found in ``Reinforcement Learning: An Introduction'' by Richard S. Sutton and Andrew G. Barto. It is available for free at http://www.incompleteideas.net/book/the-book-2nd.html).

Initialize the bandit algorithm (a few examples)
// ε-greedy algorithm with 10 arms, ε=0.1, initial values of 0
let egreedy1 = EGreedy::new(10, 0.1, 0.0, UpdateType::Average));
// same ε-greedy but non-stationary with step size of 0.1
let egreedy2 = EGreedy::new(10, 0.1, 0.0, UpdateType::Nonstationary(0.1));
// Upper Confidence Bound with 10 arms and c=1
let ucb1 = UCB::new(10, 1.);
// Stochastic gradient with 10 arms, step size of 0.1, with baseline
let sg1 = StochasticGradient::new(10, 0.1, true);
feedback loop:
// choose the best action according to the bandit algorithm
let action = ucb1.choose();
let reward = [...]; // using the action and computing the reward
// updates the bandit algorithm using the reward
ucb1.update(action, reward);
Note: A more detailed example and benchmark can be found in the rl-bandit-bench crate.
bandit.rs traits required to implement a bandit algorithm and helper functions
src/bandits: contains implemented bandit algorithms