Crates.io | rmpfit |
lib.rs | rmpfit |
version | 0.3.0 |
source | src |
created_at | 2021-02-19 14:37:21.076232 |
updated_at | 2023-11-29 14:43:44.914696 |
description | Pure Rust implementation of the CMPFIT library |
homepage | |
repository | https://git.3lp.cx/dyadkin/rmpfit |
max_upload_size | |
id | 357597 |
size | 91,585 |
Very simple pure Rust implementation of the CMPFIT library: the Levenberg-Marquardt technique to solve the least-squares problem.
The code is mainly copied directly from CMPFIT almost without changing. The original CMPFIT tests (Linear (free parameters), Quad (free and fixed parameters), and Gaussian (free and fixed parameters) function) are reproduced and passed.
Just a few obvoius Rust-specific optimizations are done:
goto
(fuf).MPFitter
to call the user code.bool
type if possible.A user should implement trait MPFitter
for its struct:
use rmpfit::{MPFitter, MPResult, mpfit};
struct Linear {
x: Vec<f64>,
y: Vec<f64>,
ye: Vec<f64>,
}
impl MPFitter for Linear {
fn eval(&self, params: &[f64], deviates: &mut [f64]) -> MPResult<()> {
for (((d, x), y), ye) in deviates
.iter_mut()
.zip(self.x.iter())
.zip(self.y.iter())
.zip(self.ye.iter())
{
let f = params[0] + params[1] * *x;
*d = (*y - f) / *ye;
}
Ok(())
}
fn number_of_points(&self) -> usize {
self.x.len()
}
}
fn main() {
let l = Linear {
x: vec![
-1.7237128E+00,
1.8712276E+00,
-9.6608055E-01,
-2.8394297E-01,
1.3416969E+00,
1.3757038E+00,
-1.3703436E+00,
4.2581975E-02,
-1.4970151E-01,
8.2065094E-01,
],
y: vec![
1.9000429E-01,
6.5807428E+00,
1.4582725E+00,
2.7270851E+00,
5.5969253E+00,
5.6249280E+00,
0.787615,
3.2599759E+00,
2.9771762E+00,
4.5936475E+00,
],
ye: vec![0.07; 10],
};
// initializing input parameters
let mut init = [1., 1.];
let res = l.mpfit(&mut init, None, &Default::default()).unwrap();
// actual 3.2
assert_approx_eq!(init[0], 3.20996572);
assert_approx_eq!(status.xerror[0], 0.02221018);
// actual 1.78
assert_approx_eq!(init[1], 1.77095420);
assert_approx_eq!(status.xerror[1], 0.01893756);
}
then init
will contain the refined parameters of the fitting function. If user function fails to calculate
residuals, it should return MPError::Eval
.