rucrf

Crates.iorucrf
lib.rsrucrf
version0.3.2
sourcesrc
created_at2022-09-14 11:50:06.729027
updated_at2022-10-05 12:19:40.099343
descriptionConditional Random Fields implemented in pure Rust
homepagehttps://github.com/daac-tools/rucrf
repositoryhttps://github.com/daac-tools/rucrf
max_upload_size
id665735
size95,144
Koichi Akabe (vbkaisetsu)

documentation

README

rucrf: Conditional Random Fields implemented in pure Rust

Crates.io Documentation Rust Build Status

rucrf contains a trainer and an estimator for Conditional Random Fields (CRFs). This library supports:

  • lattices with variable length edges,
  • L1 and L2 regularization, and
  • multi-threading during training.

Examples

use std::num::NonZeroU32;

use rucrf::{Edge, FeatureProvider, FeatureSet, Lattice, Model, Trainer};

// Train:
// 京(kyo) 都(to)
// 東(to) 京(kyo)
// 京(kei) 浜(hin)
// 京(kyo) の(no) 都(miyako)
//
// Test:
// 水(mizu) の(no) 都(miyako)
//
// 1-gram features:
// 京: 1, 都: 2, 東: 3, 浜: 4, の: 5, 水: 6
// 2-gram features:
// kyo: 1, to: 2, kei: 3, hin: 4, no: 5, miyako: 6, mizu: 7

let mut provider = FeatureProvider::new();
let label_京kyo = provider.add_feature_set(FeatureSet::new(
    &[NonZeroU32::new(1).unwrap()],
    &[NonZeroU32::new(1)],
    &[NonZeroU32::new(1)],
))?;
let label_都to = provider.add_feature_set(FeatureSet::new(
    &[NonZeroU32::new(2).unwrap()],
    &[NonZeroU32::new(2)],
    &[NonZeroU32::new(2)],
))?;
let label_東to = provider.add_feature_set(FeatureSet::new(
    &[NonZeroU32::new(3).unwrap()],
    &[NonZeroU32::new(2)],
    &[NonZeroU32::new(2)],
))?;
let label_京kei = provider.add_feature_set(FeatureSet::new(
    &[NonZeroU32::new(1).unwrap()],
    &[NonZeroU32::new(3)],
    &[NonZeroU32::new(3)],
))?;
let label_浜hin = provider.add_feature_set(FeatureSet::new(
    &[NonZeroU32::new(4).unwrap()],
    &[NonZeroU32::new(4)],
    &[NonZeroU32::new(4)],
))?;
let label_のno = provider.add_feature_set(FeatureSet::new(
    &[NonZeroU32::new(5).unwrap()],
    &[NonZeroU32::new(5)],
    &[NonZeroU32::new(5)],
))?;
let label_都miyako = provider.add_feature_set(FeatureSet::new(
    &[NonZeroU32::new(2).unwrap()],
    &[NonZeroU32::new(6)],
    &[NonZeroU32::new(6)],
))?;
let label_水mizu = provider.add_feature_set(FeatureSet::new(
    &[NonZeroU32::new(6).unwrap()],
    &[NonZeroU32::new(7)],
    &[NonZeroU32::new(7)],
))?;

let mut lattices = vec![];

// 京都 (kyo to)
let mut lattice = Lattice::new(2)?;
lattice.add_edge(0, Edge::new(1, label_京kyo))?;
lattice.add_edge(1, Edge::new(2, label_都to))?;

lattice.add_edge(0, Edge::new(1, label_京kei))?;
lattice.add_edge(1, Edge::new(2, label_都miyako))?;

lattices.push(lattice);

// 東京 (to kyo)
let mut lattice = Lattice::new(2)?;
lattice.add_edge(0, Edge::new(1, label_東to))?;
lattice.add_edge(1, Edge::new(2, label_京kyo))?;

lattice.add_edge(1, Edge::new(2, label_京kei))?;

lattices.push(lattice);

// 京浜 (kei hin)
let mut lattice = Lattice::new(2)?;
lattice.add_edge(0, Edge::new(1, label_京kei))?;
lattice.add_edge(1, Edge::new(2, label_浜hin))?;

lattice.add_edge(0, Edge::new(1, label_京kyo))?;

lattices.push(lattice);

// 京の都 (kyo no miyako)
let mut lattice = Lattice::new(3)?;
lattice.add_edge(0, Edge::new(1, label_京kyo))?;
lattice.add_edge(1, Edge::new(2, label_のno))?;
lattice.add_edge(2, Edge::new(3, label_都miyako))?;

lattice.add_edge(0, Edge::new(1, label_京kei))?;
lattice.add_edge(2, Edge::new(3, label_都to))?;

lattices.push(lattice);

// Generates a model
let trainer = Trainer::new();
let model = trainer.train(&lattices, provider);

// 水の都 (mizu no miyako)
let mut lattice = Lattice::new(3)?;
lattice.add_edge(0, Edge::new(1, label_水mizu))?;
lattice.add_edge(1, Edge::new(2, label_のno))?;
lattice.add_edge(2, Edge::new(3, label_都to))?;
lattice.add_edge(2, Edge::new(3, label_都miyako))?;

let (path, _) = model.search_best_path(&lattice);

assert_eq!(vec![
    Edge::new(1, label_水mizu),
    Edge::new(2, label_のno),
    Edge::new(3, label_都miyako),
], path);

License

Licensed under either of

at your option.

Contribution

Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in work by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any additional terms or conditions.

Commit count: 57

cargo fmt