| Crates.io | ruqu-qarlp |
| lib.rs | ruqu-qarlp |
| version | 0.1.32 |
| created_at | 2026-01-18 00:07:54.927122+00 |
| updated_at | 2026-01-18 00:07:54.927122+00 |
| description | Quantum-Assisted Reinforcement Learning Policy - exploratory quantum RL implementation with variational circuits |
| homepage | https://ruv.io |
| repository | https://github.com/ruvnet/ruvector |
| max_upload_size | |
| id | 2051456 |
| size | 193,936 |
Quantum-Assisted Reinforcement Learning Policy - exploratory quantum RL implementation with variational circuits.
Part of the ruQu quantum computing suite by ruv.io.
[dependencies]
ruqu-qarlp = "0.1"
use ruqu_qarlp::{QuantumPolicy, PolicyConfig, Environment};
let config = PolicyConfig {
n_qubits: 4,
n_layers: 2,
learning_rate: 0.01,
..Default::default()
};
let mut policy = QuantumPolicy::new(config)?;
let env = Environment::cartpole();
// Training loop
for episode in 0..1000 {
let trajectory = policy.rollout(&env)?;
policy.update(&trajectory)?;
}
MIT License - see LICENSE