Crates.io | rurel |
lib.rs | rurel |
version | 0.6.0 |
source | src |
created_at | 2017-03-05 10:07:49.93213 |
updated_at | 2024-06-25 08:46:02.030316 |
description | Flexible, reusable reinforcement learning (Q learning) implementation |
homepage | https://github.com/milanboers/rurel |
repository | https://github.com/milanboers/rurel |
max_upload_size | |
id | 8823 |
size | 63,804 |
Rurel is a flexible, reusable reinforcement learning (Q learning) implementation in Rust.
In Cargo.toml:
rurel = "0.6.0"
An example is included. This teaches an agent on a 21x21 grid how to arrive at 10,10, using actions (go left, go up, go right, go down):
cargo run --example eucdist
There are two main traits you need to implement: rurel::mdp::State
and rurel::mdp::Agent
.
A State
is something which defines a Vec
of actions that can be taken from this state, and has a certain reward. A State
needs to define the corresponding action type A
.
An Agent
is something which has a current state, and given an action, can take the action and evaluate the next state.
Let's implement the example in cargo run --example eucdist
. We want to make an agent which is taught how to arrive at 10,10 on a 21x21 grid.
First, let's define a State
, which should represent a position on a 21x21, and the correspoding Action, which is either up, down, left or right.
use rurel::mdp::State;
#[derive(PartialEq, Eq, Hash, Clone)]
struct MyState { x: i32, y: i32 }
#[derive(PartialEq, Eq, Hash, Clone)]
struct MyAction { dx: i32, dy: i32 }
impl State for MyState {
type A = MyAction;
fn reward(&self) -> f64 {
// Negative Euclidean distance
-((((10 - self.x).pow(2) + (10 - self.y).pow(2)) as f64).sqrt())
}
fn actions(&self) -> Vec<MyAction> {
vec![MyAction { dx: 0, dy: -1 }, // up
MyAction { dx: 0, dy: 1 }, // down
MyAction { dx: -1, dy: 0 }, // left
MyAction { dx: 1, dy: 0 }, // right
]
}
}
Then define the agent:
use rurel::mdp::Agent;
struct MyAgent { state: MyState }
impl Agent<MyState> for MyAgent {
fn current_state(&self) -> &MyState {
&self.state
}
fn take_action(&mut self, action: &MyAction) -> () {
match action {
&MyAction { dx, dy } => {
self.state = MyState {
x: (((self.state.x + dx) % 21) + 21) % 21, // (x+dx) mod 21
y: (((self.state.y + dy) % 21) + 21) % 21, // (y+dy) mod 21
}
}
}
}
}
That's all. Now make a trainer and train the agent with Q learning, with learning rate 0.2, discount factor 0.01 and an initial value of Q of 2.0. We let the trainer run for 100000 iterations, randomly exploring new states.
use rurel::AgentTrainer;
use rurel::strategy::learn::QLearning;
use rurel::strategy::explore::RandomExploration;
use rurel::strategy::terminate::FixedIterations;
let mut trainer = AgentTrainer::new();
let mut agent = MyAgent { state: MyState { x: 0, y: 0 }};
trainer.train(&mut agent,
&QLearning::new(0.2, 0.01, 2.),
&mut FixedIterations::new(100000),
&RandomExploration::new());
After this, you can query the learned value (Q) for a certain action in a certain state by:
trainer.expected_value(&state, &action) // : Option<f64>
cargo fmt --all
to format the code.cargo clippy --all-targets --all-features -- -Dwarnings
to lint the code.cargo test
to test the code.