| Crates.io | rust-mcp-server-syncable-cli |
| lib.rs | rust-mcp-server-syncable-cli |
| version | 0.1.13 |
| created_at | 2025-06-24 20:09:03.345745+00 |
| updated_at | 2025-09-20 20:46:54.359789+00 |
| description | High-performance Model Context Protocol (MCP) server for code analysis, security scanning, and project insights. |
| homepage | https://github.com/syncable-dev/syncable-cli-mcp-server |
| repository | https://github.com/syncable-dev/syncable-cli-mcp-server |
| max_upload_size | |
| id | 1724945 |
| size | 177,600 |
High-performance Model Context Protocol (MCP) server for code analysis, security scanning, and project insights—written in Rust 🦀.
This MCP server exposes the capabilities of the syncable-cli tool to AI agents. While syncable-cli is a standalone CLI tool for interacting with Syncable workspaces, this server acts as a bridge, allowing AI agents and other clients to access those CLI features programmatically via the Model Context Protocol (MCP). Both projects are closely related and complement each other.
rust-mcp-server-syncable-cli is published on crates.io. You need a recent Rust toolchain (1.70+ recommended). It works as an MCP server for AI agents where you can use the langgraph framework or similar to connect to this MCP server for code scanning.
Install the server binaries from crates.io:
cargo install rust-mcp-server-syncable-cli
This installs two binaries into your Cargo bin directory (usually ~/.cargo/bin):
mcp-stdio — stdin/stdout-based MCP servermcp-sse — HTTP/SSE-based MCP serverIf you see a warning like:
be sure to add
/Users/yourname/.cargo/binto your PATH to be able to run the installed binaries
Add the following to your shell profile:
For zsh (default on recent macOS):
echo 'export PATH="$HOME/.cargo/bin:$PATH"' >> ~/.zshrc
source ~/.zshrc
For bash:
echo 'export PATH="$HOME/.cargo/bin:$PATH"' >> ~/.bash_profile
source ~/.bash_profile
Verify installation:
which mcp-stdio
which mcp-sse
You can connect to the MCP server from Python using the mcp client library or similar.
Below is an example using mcp.client.stdio to launch and communicate with the Rust MCP server via stdio:
import asyncio
from mcp.client.session import ClientSession
from mcp.client.stdio import StdioServerParameters, stdio_client
async def main():
async with stdio_client(
StdioServerParameters(command="mcp-stdio")
) as (read, write):
async with ClientSession(read, write) as session:
await session.initialize()
tools = await session.list_tools()
print("Tools:", tools)
about_info_result = await session.call_tool("about_info", {{}})
print("About info result:", about_info_result)
code_analyze_result = await session.call_tool("analysis_scan", {{"path": ".", "display": "matrix"}})
print("Code analysis result:", code_analyze_result)
security_scan_result = await session.call_tool("security_scan", {{"path": "."}})
print("Security scan result:", security_scan_result)
dependency_scan_result = await session.call_tool("dependency_scan", {{"path": "."}})
print("Dependency scan result:", dependency_scan_result)
asyncio.run(main())
If you prefer to use HTTP/SSE, start the server with:
mcp-sse
import asyncio
from mcp.client.session import ClientSession
from mcp.client.sse import sse_client
from utils import render_utility_result # Adjust import if needed
async def main():
server_url = "http://127.0.0.1:8008/sse"
async with sse_client(server_url) as (read, write):
async with ClientSession(read, write) as session:
await session.initialize()
# List available tools
tools = await session.list_tools()
print("Tools:")
render_utility_result(tools)
# Call the 'about_info' tool
about_info_result = await session.call_tool("about_info", {{}})
print("About info result:")
render_utility_result(about_info_result)
# Call the 'analysis_scan' tool
code_analyze_result = await session.call_tool("analysis_scan", {{"path": "../", "display": "matrix"}})
print("Code analysis result:")
render_utility_result(code_analyze_result)
# Call the 'security_scan' tool
security_scan_result = await session.call_tool("security_scan", {{"path": "../"}})
print("Security scan result:")
render_utility_result(security_scan_result)
# Call the 'dependency_scan' tool
dependency_scan_result = await session.call_tool("dependency_scan", {{"path": "../"}})
print("Dependency scan result:")
render_utility_result(dependency_scan_result)
if __name__ == "__main__":
asyncio.run(main())
You can use the LangGraph framework to connect to this MCP server in both stdio and SSE modes. Below are example Python scripts for each mode.
Using Stdio Mode This example launches the mcp-stdio binary and connects via stdio:
import asyncio
import os
from dotenv import load_dotenv
from langchain_mcp_adapters.client import MultiServerMCPClient
from langgraph.prebuilt import create_react_agent
import openai
load_dotenv()
openai.api_key = os.getenv("OPENAI_API_KEY")
async def main():
client = MultiServerMCPClient({
"syncable_cli": {
# Adjust this path if needed—just needs to point
# at your compiled mcp-stdio binary.
"command": "../rust-mcp-server-syncable-cli/target/release/mcp-stdio",
"args": [], # no extra args
"transport": "stdio", # stdio transport
}
})
tools = await client.get_tools()
print(f"Fetched {len(tools)} tools:")
for t in tools:
print(f" • {t.name}")
agent = create_react_agent("openai:gpt-4o", tools)
tests = [
("about_info", "Call the 'about_info' tool."),
("analysis_scan", "Call 'analysis_scan' on path '../' with display 'matrix'."),
("security_scan", "Call 'security_scan' on path '../'."),
("dependency_scan","Call 'dependency_scan' on path '../'."),
]
for name, prompt in tests:
print(f"\n--- {name} → {prompt}")
resp = await agent.ainvoke({
"messages": [{"role": "user", "content": prompt}]
})
print(resp)
if __name__ == "__main__":
asyncio.run(main())
Using HTTP/SSE Mode This example connects to the MCP server via HTTP/SSE:
import asyncio
import os
from dotenv import load_dotenv
from langchain_mcp_adapters.client import MultiServerMCPClient
from langgraph.prebuilt import create_react_agent
import openai
load_dotenv()
openai.api_key = os.getenv("OPENAI_API_KEY")
async def main():
# ← Use /sse here, since `mcp-sse` prints "Server is available at .../sse"
client = MultiServerMCPClient({
"demo": {
"url": "http://127.0.0.1:8008/sse",
"transport": "sse",
}
})
tools = await client.get_tools()
print(f"Fetched {len(tools)} tools from MCP server:")
for t in tools:
print(f" • {t.name}")
agent = create_react_agent("openai:gpt-4o", tools)
prompts = [
("about_info", "Call the 'about_info' tool."),
("analysis_scan", "Call the 'analysis_scan' tool on path '../' with display 'matrix'."),
("security_scan", "Call the 'security_scan' tool on path '../'."),
("dependency_scan","Call the 'dependency_scan' tool on path '../'."),
]
for name, prompt in prompts:
print(f"\n--- Invoking {name} ---")
resp = await agent.ainvoke({
"messages": [{"role": "user", "content": prompt}]
})
print(resp)
if __name__ == "__main__":
asyncio.run(main())
The SSE server port can be configured using the MCP_PORT environment variable.
MCP_PORT: Sets the port for the SSE server.
8008Example of running the server on a custom port:
MCP_PORT=9000 mcp-sse
about_info, analysis_scan, security_scan, and dependency_scan.Run Python tests:
cargo doc --open
Licensed under the MIT License. See LICENSE for details.
langgraph using sse version is still under development and is not functioning well. (Fixed: json output is set to be true)
when use json output, stdio protocal has limitations on the size of json file 8k, which causes programe to hang if the analyze scan result is too big. If this protocal is rally needed, try to disable the json output in analysis_scan
This MCP server exposes the capabilities of the syncable-cli tool to AI agents. While syncable-cli is a standalone CLI tool for interacting with Syncable workspaces, this server acts as a bridge, allowing AI agents and other clients to access those CLI features programmatically via the Model Context Protocol (MCP). Both projects are closely related and complement each other.
rust-mcp-server-syncable-cli is published on crates.io. You need a recent Rust toolchain (1.70+ recommended). It works as an MCP server for AI agents where you can use the langgraph framework or similar to connect to this MCP server for code scanning.
Install the server binaries from crates.io:
cargo install rust-mcp-server-syncable-cli
This installs two binaries into your Cargo bin directory (usually ~/.cargo/bin):
mcp-stdio — stdin/stdout-based MCP servermcp-sse — HTTP/SSE-based MCP serverIf you see a warning like:
be sure to add
/Users/yourname/.cargo/binto your PATH to be able to run the installed binaries
Add the following to your shell profile:
For zsh (default on recent macOS):
echo 'export PATH="$HOME/.cargo/bin:$PATH"' >> ~/.zshrc
source ~/.zshrc
For bash:
echo 'export PATH="$HOME/.cargo/bin:$PATH"' >> ~/.bash_profile
source ~/.bash_profile
Verify installation:
which mcp-stdio
which mcp-sse
You can connect to the MCP server from Python using the mcp client library or similar.
Below is an example using mcp.client.stdio to launch and communicate with the Rust MCP server via stdio:
import asyncio
from mcp.client.session import ClientSession
from mcp.client.stdio import StdioServerParameters, stdio_client
async def main():
async with stdio_client(
StdioServerParameters(command="mcp-stdio")
) as (read, write):
async with ClientSession(read, write) as session:
await session.initialize()
tools = await session.list_tools()
print("Tools:", tools)
about_info_result = await session.call_tool("about_info", {})
print("About info result:", about_info_result)
code_analyze_result = await session.call_tool("analysis_scan", {"path": ".", "display": "matrix"})
print("Code analysis result:", code_analyze_result)
security_scan_result = await session.call_tool("security_scan", {"path": "."})
print("Security scan result:", security_scan_result)
dependency_scan_result = await session.call_tool("dependency_scan", {"path": "."})
print("Dependency scan result:", dependency_scan_result)
asyncio.run(main())
If you prefer to use HTTP/SSE, start the server with:
mcp-sse
import asyncio
from mcp.client.session import ClientSession
from mcp.client.sse import sse_client
from utils import render_utility_result # Adjust import if needed
async def main():
server_url = "http://127.0.0.1:8000/sse"
async with sse_client(server_url) as (read, write):
async with ClientSession(read, write) as session:
await session.initialize()
# List available tools
tools = await session.list_tools()
print("Tools:")
render_utility_result(tools)
# Call the 'about_info' tool
about_info_result = await session.call_tool("about_info", {})
print("About info result:")
render_utility_result(about_info_result)
# Call the 'analysis_scan' tool
code_analyze_result = await session.call_tool("analysis_scan", {"path": "../", "display": "matrix"})
print("Code analysis result:")
render_utility_result(code_analyze_result)
# Call the 'security_scan' tool
security_scan_result = await session.call_tool("security_scan", {"path": "../"})
print("Security scan result:")
render_utility_result(security_scan_result)
# Call the 'dependency_scan' tool
dependency_scan_result = await session.call_tool("dependency_scan", {"path": "../"})
print("Dependency scan result:")
render_utility_result(dependency_scan_result)
if __name__ == "__main__":
asyncio.run(main())
You can use the LangGraph framework to connect to this MCP server in both stdio and SSE modes. Below are example Python scripts for each mode.
Using Stdio Mode This example launches the mcp-stdio binary and connects via stdio:
import asyncio
import os
from dotenv import load_dotenv
from langchain_mcp_adapters.client import MultiServerMCPClient
from langgraph.prebuilt import create_react_agent
import openai
load_dotenv()
openai.api_key = os.getenv("OPENAI_API_KEY")
async def main():
client = MultiServerMCPClient({
"syncable_cli": {
# Adjust this path if needed—just needs to point
# at your compiled mcp-stdio binary.
"command": "../rust-mcp-server-syncable-cli/target/release/mcp-stdio",
"args": [], # no extra args
"transport": "stdio", # stdio transport
}
})
tools = await client.get_tools()
print(f"Fetched {len(tools)} tools:")
for t in tools:
print(f" • {t.name}")
agent = create_react_agent("openai:gpt-4o", tools)
tests = [
("about_info", "Call the 'about_info' tool."),
("analysis_scan", "Call 'analysis_scan' on path '../' with display 'matrix'."),
("security_scan", "Call 'security_scan' on path '../'."),
("dependency_scan","Call 'dependency_scan' on path '../'."),
]
for name, prompt in tests:
print(f"\n--- {name} → {prompt}")
resp = await agent.ainvoke({
"messages": [{"role": "user", "content": prompt}]
})
print(resp)
if __name__ == "__main__":
asyncio.run(main())
Using HTTP/SSE Mode This example connects to the MCP server via HTTP/SSE:
import asyncio
import os
from dotenv import load_dotenv
from langchain_mcp_adapters.client import MultiServerMCPClient
from langgraph.prebuilt import create_react_agent
import openai
load_dotenv()
openai.api_key = os.getenv("OPENAI_API_KEY")
async def main():
# ← Use /sse here, since `mcp-sse` prints "Server is available at .../sse"
client = MultiServerMCPClient({
"demo": {
"url": "http://127.0.0.1:8000/sse",
"transport": "sse",
}
})
tools = await client.get_tools()
print(f"Fetched {len(tools)} tools from MCP server:")
for t in tools:
print(f" • {t.name}")
agent = create_react_agent("openai:gpt-4o", tools)
prompts = [
("about_info", "Call the 'about_info' tool."),
("analysis_scan", "Call the 'analysis_scan' tool on path '../' with display 'matrix'."),
("security_scan", "Call the 'security_scan' tool on path '../'."),
("dependency_scan","Call the 'dependency_scan' tool on path '../'."),
]
for name, prompt in prompts:
print(f"\n--- Invoking {name} ---")
resp = await agent.ainvoke({
"messages": [{"role": "user", "content": prompt}]
})
print(resp)
if __name__ == "__main__":
asyncio.run(main())
about_info, analysis_scan, security_scan, and dependency_scan.Run Python tests:
cargo doc --open
Licensed under the MIT License. See LICENSE for details.
langgraph using sse version is still under development and is not functioning well. (Fixed: json output is set to be true)
when use json output, stdio protocal has limitations on the size of json file 8k, which causes programe to hang if the analyze scan result is too big. If this protocal is rally needed, try to disable the json output in analysis_scan