rust-sasa

Crates.iorust-sasa
lib.rsrust-sasa
version0.2.3
sourcesrc
created_at2024-02-11 22:54:02.11942
updated_at2024-09-14 01:03:06.022031
descriptionRustSASA is a Rust library for computing the absolute solvent accessible surface area (ASA/SASA) of each atom in a given protein structure using the Shrake-Rupley algorithm.
homepage
repositoryhttps://github.com/maxall41/RustSASA
max_upload_size
id1136159
size365,087
Max Campbell (maxall41)

documentation

https://docs.rs/rust-sasa/latest/rust_sasa/

README

RustSASA

GitHub Actions Workflow Status Crates.io Downloads (recent) Crates.io License

RustSASA is a Rust library for computing the absolute solvent accessible surface area (ASA/SASA) of each atom in a given protein structure using the Shrake-Rupley algorithm[1]. It can be used in Rust and Python!

Features:

  • ๐Ÿฆ€ Written in Pure Rust
  • โšก๏ธ 3X Faster than Biopython and ~120% faster than Freesasa
  • ๐Ÿงช Full test coverage
  • ๐Ÿ Can be used in Python

Using in Rust ๐Ÿฆ€

use pdbtbx::StrictnessLevel;
use rust_sasa::{Atom, calculate_sasa, calculate_sasa_internal, SASALevel};
let (mut pdb, _errors) = pdbtbx::open(
             "./example.cif",
             StrictnessLevel::Medium
).unwrap();
let result = calculate_sasa(&pdb,None,None,SASALevel::Residue);

Full documentation can be found here

Using in Python ๐Ÿ

You can now utilize RustSasa within Python to speed up your scripts! Take a look at rust-sasa-python!

Installation:

pip install rust-sasa-python

Example:

from rust_sasa_python import calculate_sasa_at_residue_level
residue_sasa_values = calculate_sasa_at_residue_level("path_to_pdb_file.pdb") # Also supports mmCIF files!

See full docs here

Benchmarking

Benchmarks were performed on an M2 Apple Mac with 8GB of RAM and 8 Cores with the protein AF-A0A2K5XT84-F1 (AlphaFold).

  • Biopython: ~150ms

  • Freesasa: ~90ms

  • RustSASA: ~40ms

Citations:

1: Shrake A, Rupley JA. Environment and exposure to solvent of protein atoms. Lysozyme and insulin. J Mol Biol. 1973 Sep 15;79(2):351-71. doi: 10.1016/0022-2836(73)90011-9. PMID: 4760134.

Commit count: 43

cargo fmt