ruv-swarm-agents

Crates.ioruv-swarm-agents
lib.rsruv-swarm-agents
version1.0.5
created_at2025-06-30 04:39:18.982381+00
updated_at2025-07-02 20:47:20.160527+00
descriptionSpecialized AI agents for RUV Swarm
homepage
repositoryhttps://github.com/ruvnet/ruv-FANN
max_upload_size
id1731414
size31,114
rUv (ruvnet)

documentation

README

ruv-swarm-agents

Specialized AI agent implementations for the RUV Swarm neural orchestration system. This crate provides cognitive diversity through intelligent agent types that leverage different thinking patterns for optimal swarm performance.

License Rust WebAssembly

๐Ÿง  Introduction

The ruv-swarm-agents crate implements specialized AI agents with diverse cognitive patterns designed for high-performance swarm orchestration. Each agent type embodies different thinking approaches, enabling the swarm to tackle complex problems from multiple angles simultaneously.

Built on WebAssembly with SIMD optimization, these agents provide:

  • Cognitive Diversity: Six distinct thinking patterns for comprehensive problem-solving
  • Neural Integration: Built-in neural network support with 18+ activation functions
  • Swarm Coordination: Seamless inter-agent communication and task distribution
  • Performance Optimization: WASM-powered execution with memory-efficient design

โœจ Key Features

๐ŸŽฏ Cognitive Patterns

Six scientifically-backed cognitive patterns drive agent behavior:

  • Convergent Thinking: Focused, analytical problem-solving
  • Divergent Thinking: Creative, exploratory ideation
  • Lateral Thinking: Unconventional, breakthrough approaches
  • Systems Thinking: Holistic, interconnected analysis
  • Critical Thinking: Evaluative, questioning methodology
  • Abstract Thinking: Conceptual, theoretical reasoning

๐Ÿค– Specialized Agent Types

Five specialized agent implementations:

  • Researcher: Data analysis, information gathering, pattern discovery
  • Coder: Code generation, optimization, technical implementation
  • Analyst: Performance evaluation, metrics analysis, insights generation
  • Optimizer: Resource management, efficiency improvements, bottleneck resolution
  • Coordinator: Task orchestration, agent synchronization, workflow management

๐Ÿš€ Advanced Capabilities

  • Neural Network Integration: Adaptive learning with 18+ activation functions
  • WebAssembly Performance: SIMD-optimized execution for maximum throughput
  • Persistent Memory: SQLite-backed agent memory for long-term learning
  • Real-time Monitoring: Comprehensive metrics and health monitoring
  • Dynamic Scaling: Automatic agent spawning based on workload demands

๐Ÿ“ฆ Installation

Add to your Cargo.toml:

[dependencies]
ruv-swarm-agents = "0.1.0"

# Required dependencies
ruv-swarm-core = "0.1.0"
tokio = { version = "1.0", features = ["full"] }
serde = { version = "1.0", features = ["derive"] }

For WebAssembly targets:

[dependencies]
ruv-swarm-agents = { version = "0.1.0", features = ["wasm"] }

๐Ÿš€ Quick Start

Basic Agent Creation

use ruv_swarm_agents::{Agent, CognitivePattern, ResearcherAgent};
use ruv_swarm_core::task::Task;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Create a researcher agent with divergent thinking
    let mut agent = ResearcherAgent::new("researcher-1")
        .with_cognitive_pattern(CognitivePattern::Divergent)
        .with_capabilities(vec![
            "data-analysis".to_string(),
            "pattern-recognition".to_string(),
            "information-synthesis".to_string(),
        ]);

    // Start the agent
    agent.start().await?;

    // Create and process a task
    let task = Task::new("analyze-dataset", "research")
        .with_payload("Process customer behavior patterns");

    let result = agent.process(task).await?;
    println!("Analysis complete: {:?}", result);

    Ok(())
}

Multi-Agent Swarm Setup

use ruv_swarm_agents::{
    Agent, CognitivePattern, AgentSwarm,
    ResearcherAgent, CoderAgent, AnalystAgent
};

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Create agents with complementary cognitive patterns
    let researcher = ResearcherAgent::new("researcher-1")
        .with_cognitive_pattern(CognitivePattern::Divergent);
    
    let coder = CoderAgent::new("coder-1")
        .with_cognitive_pattern(CognitivePattern::Convergent);
        
    let analyst = AnalystAgent::new("analyst-1")
        .with_cognitive_pattern(CognitivePattern::Critical);

    // Form a coordinated swarm
    let mut swarm = AgentSwarm::new("problem-solving-swarm")
        .add_agent(researcher)
        .add_agent(coder)
        .add_agent(analyst)
        .with_topology(SwarmTopology::Mesh);

    // Initialize and orchestrate
    swarm.initialize().await?;
    
    let result = swarm.orchestrate_task(
        "Build an intelligent data processing pipeline"
    ).await?;

    println!("Swarm result: {:?}", result);
    Ok(())
}

Neural Network Enhanced Agents

use ruv_swarm_agents::{Agent, NeuralEnhancedAgent, ActivationFunction};

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Create agent with neural network capabilities
    let mut agent = NeuralEnhancedAgent::new("neural-optimizer-1")
        .with_network_config(|config| {
            config
                .layers(&[784, 128, 64, 10])
                .activation(ActivationFunction::ReLU)
                .learning_rate(0.001)
                .enable_simd(true)
        });

    // Train the agent on task patterns
    agent.train_on_tasks(&training_tasks, 100).await?;
    
    // Use trained agent for optimized task processing
    let optimized_result = agent.process_with_learning(task).await?;
    
    Ok(())
}

๐Ÿ“š Agent Types Documentation

๐Ÿ”ฌ ResearcherAgent

Specialized for data analysis, information gathering, and pattern discovery.

Cognitive Patterns: Divergent, Systems, Abstract
Capabilities:

  • data-analysis - Statistical analysis and pattern recognition
  • information-synthesis - Combining insights from multiple sources
  • hypothesis-generation - Creating testable theories from observations
  • literature-review - Comprehensive information gathering

Example Use Cases:

  • Market research and trend analysis
  • Scientific data exploration
  • Competitive intelligence gathering
  • User behavior pattern discovery

๐Ÿ’ป CoderAgent

Optimized for code generation, technical implementation, and system development.

Cognitive Patterns: Convergent, Critical, Systems
Capabilities:

  • code-generation - Creating optimized code solutions
  • architecture-design - System design and planning
  • debugging - Error identification and resolution
  • optimization - Performance improvement implementation

Example Use Cases:

  • Automated code generation
  • Legacy system modernization
  • Performance optimization
  • Technical debt resolution

๐Ÿ“Š AnalystAgent

Focused on performance evaluation, metrics analysis, and insight generation.

Cognitive Patterns: Critical, Convergent, Abstract
Capabilities:

  • metrics-analysis - Statistical evaluation and reporting
  • performance-evaluation - System performance assessment
  • trend-identification - Pattern recognition in time series data
  • recommendation-generation - Actionable insights from analysis

Example Use Cases:

  • Business intelligence reporting
  • System performance monitoring
  • Financial analysis and forecasting
  • Quality assurance evaluation

โšก OptimizerAgent

Specialized in resource management, efficiency improvements, and bottleneck resolution.

Cognitive Patterns: Systems, Convergent, Critical
Capabilities:

  • resource-optimization - Memory and CPU efficiency improvements
  • workflow-streamlining - Process optimization and automation
  • bottleneck-resolution - Performance constraint identification
  • cost-reduction - Efficiency-driven cost optimization

Example Use Cases:

  • Infrastructure optimization
  • Supply chain efficiency
  • Database query optimization
  • Algorithm performance tuning

๐ŸŽฏ CoordinatorAgent

Designed for task orchestration, agent synchronization, and workflow management.

Cognitive Patterns: Systems, Lateral, Abstract
Capabilities:

  • task-orchestration - Multi-agent task coordination
  • workflow-management - Complex process coordination
  • resource-allocation - Optimal agent task distribution
  • conflict-resolution - Agent disagreement mediation

Example Use Cases:

  • Project management automation
  • Multi-agent system coordination
  • Resource scheduling optimization
  • Distributed computing orchestration

๐Ÿงฌ Cognitive Pattern Combinations

Agents can leverage multiple cognitive patterns simultaneously for enhanced problem-solving:

// Multi-pattern research agent
let versatile_researcher = ResearcherAgent::new("multi-pattern-researcher")
    .with_primary_pattern(CognitivePattern::Divergent)
    .with_secondary_patterns(vec![
        CognitivePattern::Systems,
        CognitivePattern::Abstract
    ])
    .enable_pattern_switching(true);

// Pattern switching based on task type
agent.configure_pattern_rules(|task| {
    match task.category {
        "creative" => CognitivePattern::Divergent,
        "analytical" => CognitivePattern::Convergent,
        "system-design" => CognitivePattern::Systems,
        _ => CognitivePattern::Critical
    }
});

๐Ÿ”— Integration Examples

MCP Server Integration

use ruv_swarm_agents::mcp::MCPAgentServer;

// Create MCP-compatible agent server
let mcp_server = MCPAgentServer::new()
    .register_agent_type::<ResearcherAgent>("researcher")
    .register_agent_type::<CoderAgent>("coder")
    .register_agent_type::<AnalystAgent>("analyst")
    .with_stdio_transport();

// Start MCP server for Claude Code integration
mcp_server.start().await?;

Web Integration

use ruv_swarm_agents::web::WebAgentInterface;

// Web-based agent interface
let web_interface = WebAgentInterface::new()
    .bind("0.0.0.0:8080")
    .with_cors_enabled()
    .register_swarm(swarm);

web_interface.serve().await?;

๐Ÿ”ง Configuration

Agent Configuration

use ruv_swarm_agents::config::AgentConfig;

let config = AgentConfig::new()
    .max_concurrent_tasks(10)
    .memory_limit_mb(512)
    .enable_neural_networks(true)
    .cognitive_flexibility(0.7)
    .learning_rate(0.001)
    .collaboration_threshold(0.8);

let agent = ResearcherAgent::with_config("researcher-1", config);

Swarm Configuration

use ruv_swarm_agents::config::SwarmConfig;

let swarm_config = SwarmConfig::new()
    .topology(SwarmTopology::Hierarchical)
    .max_agents(50)
    .coordination_interval_ms(100)
    .enable_auto_scaling(true)
    .load_balancing_strategy(LoadBalancing::Cognitive);

๐Ÿ“ˆ Performance Monitoring

Real-time Metrics

// Monitor agent performance
let metrics = agent.get_metrics().await?;
println!("Tasks processed: {}", metrics.tasks_processed);
println!("Success rate: {:.2}%", metrics.success_rate * 100.0);
println!("Avg processing time: {}ms", metrics.avg_processing_time_ms);

// Cognitive pattern effectiveness
let pattern_metrics = agent.get_cognitive_metrics().await?;
for (pattern, effectiveness) in pattern_metrics {
    println!("{:?}: {:.2}% effective", pattern, effectiveness * 100.0);
}

Health Monitoring

// Continuous health monitoring
tokio::spawn(async move {
    loop {
        let health = agent.health_check().await?;
        match health.status {
            HealthStatus::Healthy => info!("Agent {} healthy", agent.id()),
            HealthStatus::Degraded => warn!("Agent {} degraded: {}", agent.id(), health.message),
            HealthStatus::Unhealthy => error!("Agent {} unhealthy: {}", agent.id(), health.message),
        }
        tokio::time::sleep(Duration::from_secs(10)).await;
    }
});

๐Ÿงช Testing

# Run agent tests
cargo test --package ruv-swarm-agents

# Run cognitive pattern tests
cargo test cognitive_patterns

# Run integration tests
cargo test --test integration

# Benchmark performance
cargo bench --package ruv-swarm-agents

๐ŸŒ Links

๐Ÿค Contributing

Contributions are welcome! Please see our Contributing Guide for details.

๐Ÿ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.


Created by rUv - Advancing AI through cognitive diversity and neural orchestration

For support and discussions, visit our GitHub Discussions.

Commit count: 0

cargo fmt