ruvector-attention-node

Crates.ioruvector-attention-node
lib.rsruvector-attention-node
version0.1.0
created_at2025-12-09 01:22:50.04116+00
updated_at2025-12-09 01:22:50.04116+00
descriptionNode.js bindings for ruvector-attention
homepage
repositoryhttps://github.com/ruvnet/ruvector
max_upload_size
id1974670
size101,082
rUv (ruvnet)

documentation

README

@ruvector/attention

High-performance attention mechanisms for Node.js, powered by Rust.

Features

  • Scaled Dot-Product Attention: Classic attention mechanism with optional scaling
  • Multi-Head Attention: Parallel attention heads for richer representations
  • Flash Attention: Memory-efficient attention with block-wise computation
  • Linear Attention: O(N) complexity attention using kernel approximations
  • Hyperbolic Attention: Attention in hyperbolic space for hierarchical data
  • Mixture-of-Experts (MoE) Attention: Dynamic expert routing for specialized attention

Installation

npm install @ruvector/attention

Usage

Basic Dot-Product Attention

const { DotProductAttention } = require('@ruvector/attention');

const attention = new DotProductAttention(512, 1.0);
const query = new Float32Array([/* ... */]);
const keys = [new Float32Array([/* ... */])];
const values = [new Float32Array([/* ... */])];

const output = attention.compute(query, keys, values);

Multi-Head Attention

const { MultiHeadAttention } = require('@ruvector/attention');

const mha = new MultiHeadAttention(512, 8); // 512 dim, 8 heads
const output = mha.compute(query, keys, values);

// Async version for large computations
const outputAsync = await mha.computeAsync(query, keys, values);

Flash Attention

const { FlashAttention } = require('@ruvector/attention');

const flash = new FlashAttention(512, 64); // 512 dim, 64 block size
const output = flash.compute(query, keys, values);

Hyperbolic Attention

const { HyperbolicAttention } = require('@ruvector/attention');

const hyperbolic = new HyperbolicAttention(512, -1.0); // negative curvature
const output = hyperbolic.compute(query, keys, values);

Mixture-of-Experts Attention

const { MoEAttention } = require('@ruvector/attention');

const moe = new MoEAttention({
  dim: 512,
  numExperts: 8,
  topK: 2,
  expertCapacity: 1.25
});

const output = moe.compute(query, keys, values);
const expertUsage = moe.getExpertUsage();

Training

const { Trainer, AdamOptimizer } = require('@ruvector/attention');

// Configure training
const trainer = new Trainer({
  learningRate: 0.001,
  batchSize: 32,
  numEpochs: 100,
  weightDecay: 0.01,
  gradientClip: 1.0,
  warmupSteps: 1000
});

// Training step
const loss = trainer.trainStep(inputs, targets);

// Get metrics
const metrics = trainer.getMetrics();
console.log(`Loss: ${metrics.loss}, LR: ${metrics.learningRate}`);

// Custom optimizer
const optimizer = new AdamOptimizer(0.001, 0.9, 0.999, 1e-8);
const updatedParams = optimizer.step(gradients);

Batch Processing

const { BatchProcessor, parallelAttentionCompute } = require('@ruvector/attention');

// Batch processor for efficient batching
const processor = new BatchProcessor({
  batchSize: 32,
  numWorkers: 4,
  prefetch: true
});

const results = await processor.processBatch(queries, keys, values);
const throughput = processor.getThroughput();

// Parallel computation with automatic worker management
const results = await parallelAttentionCompute(
  'multi-head',
  queries,
  keys,
  values,
  4 // number of workers
);

API Reference

Classes

DotProductAttention

  • constructor(dim: number, scale?: number)
  • compute(query: Float32Array, keys: Float32Array[], values: Float32Array[]): Float32Array

MultiHeadAttention

  • constructor(dim: number, numHeads: number)
  • compute(query: Float32Array, keys: Float32Array[], values: Float32Array[]): Float32Array
  • computeAsync(query: Float32Array, keys: Float32Array[], values: Float32Array[]): Promise<Float32Array>

FlashAttention

  • constructor(dim: number, blockSize: number)
  • compute(query: Float32Array, keys: Float32Array[], values: Float32Array[]): Float32Array

LinearAttention

  • constructor(dim: number, numFeatures: number)
  • compute(query: Float32Array, keys: Float32Array[], values: Float32Array[]): Float32Array

HyperbolicAttention

  • constructor(dim: number, curvature: number)
  • compute(query: Float32Array, keys: Float32Array[], values: Float32Array[]): Float32Array

MoEAttention

  • constructor(config: MoEConfig)
  • compute(query: Float32Array, keys: Float32Array[], values: Float32Array[]): Float32Array
  • getExpertUsage(): number[]

Trainer

  • constructor(config: TrainingConfig)
  • trainStep(inputs: Float32Array[], targets: Float32Array[]): number
  • trainStepAsync(inputs: Float32Array[], targets: Float32Array[]): Promise<number>
  • getMetrics(): TrainingMetrics

AdamOptimizer

  • constructor(learningRate: number, beta1?: number, beta2?: number, epsilon?: number)
  • step(gradients: Float32Array[]): Float32Array[]
  • getLearningRate(): number
  • setLearningRate(lr: number): void

BatchProcessor

  • constructor(config: BatchConfig)
  • processBatch(queries: Float32Array[], keys: Float32Array[][], values: Float32Array[][]): Promise<Float32Array[]>
  • getThroughput(): number

Functions

parallelAttentionCompute

function parallelAttentionCompute(
  attentionType: string,
  queries: Float32Array[],
  keys: Float32Array[][],
  values: Float32Array[][],
  numWorkers?: number
): Promise<Float32Array[]>

version

Returns the package version string.

Performance

This package uses Rust under the hood for optimal performance:

  • Zero-copy data transfer where possible
  • SIMD optimizations for vector operations
  • Multi-threaded batch processing
  • Memory-efficient attention mechanisms

Platform Support

Pre-built binaries are provided for:

  • macOS (x64, ARM64)
  • Linux (x64, ARM64, musl)
  • Windows (x64, ARM64)

License

MIT OR Apache-2.0

Commit count: 729

cargo fmt