| Crates.io | ruvector-core |
| lib.rs | ruvector-core |
| version | 0.1.31 |
| created_at | 2025-11-20 20:39:59.496904+00 |
| updated_at | 2026-01-08 03:54:02.146107+00 |
| description | High-performance Rust vector database core with HNSW indexing |
| homepage | |
| repository | https://github.com/ruvnet/ruvector |
| max_upload_size | |
| id | 1942551 |
| size | 546,053 |
High-performance Rust vector database engine with HNSW indexing, quantization, and SIMD optimizations.
ruvector-core is the foundational Rust library powering Ruvectorโa next-generation vector database built for extreme performance and universal deployment. This crate provides the core vector database engine with state-of-the-art algorithms optimized for modern hardware.
simsimdredb and memory-mapped filesAdd ruvector-core to your Cargo.toml:
[dependencies]
ruvector-core = "0.1.0"
[dependencies]
ruvector-core = { version = "0.1.0", features = ["simd", "uuid-support"] }
Available features:
simd (default): Enable SIMD-optimized distance calculationsuuid-support (default): Enable UUID generation for vector IDsuse ruvector_core::{VectorDB, DbOptions, VectorEntry, SearchQuery, DistanceMetric};
fn main() -> Result<(), Box<dyn std::error::Error>> {
// Create a new vector database
let mut options = DbOptions::default();
options.dimensions = 384; // Vector dimensions
options.storage_path = "./my_vectors.db".to_string();
options.distance_metric = DistanceMetric::Cosine;
let db = VectorDB::new(options)?;
// Insert vectors
db.insert(VectorEntry {
id: Some("doc1".to_string()),
vector: vec![0.1, 0.2, 0.3, /* ... 384 dimensions */],
metadata: None,
})?;
db.insert(VectorEntry {
id: Some("doc2".to_string()),
vector: vec![0.4, 0.5, 0.6, /* ... 384 dimensions */],
metadata: None,
})?;
// Search for similar vectors
let results = db.search(SearchQuery {
vector: vec![0.1, 0.2, 0.3, /* ... 384 dimensions */],
k: 10, // Return top 10 results
filter: None,
ef_search: None,
})?;
for result in results {
println!("ID: {}, Score: {}", result.id, result.score);
}
Ok(())
}
use ruvector_core::{VectorDB, VectorEntry};
// Insert multiple vectors efficiently
let entries = vec![
VectorEntry {
id: Some("doc1".to_string()),
vector: vec![0.1, 0.2, 0.3],
metadata: None,
},
VectorEntry {
id: Some("doc2".to_string()),
vector: vec![0.4, 0.5, 0.6],
metadata: None,
},
];
let ids = db.insert_batch(entries)?;
println!("Inserted {} vectors", ids.len());
use std::collections::HashMap;
use serde_json::json;
// Insert with metadata
db.insert(VectorEntry {
id: Some("product1".to_string()),
vector: vec![0.1, 0.2, 0.3],
metadata: Some(HashMap::from([
("category".to_string(), json!("electronics")),
("price".to_string(), json!(299.99)),
])),
})?;
// Search with metadata filter
let results = db.search(SearchQuery {
vector: vec![0.1, 0.2, 0.3],
k: 10,
filter: Some(HashMap::from([
("category".to_string(), json!("electronics")),
])),
ef_search: None,
})?;
use ruvector_core::{DbOptions, HnswConfig, DistanceMetric};
let mut options = DbOptions::default();
options.dimensions = 384;
options.distance_metric = DistanceMetric::Cosine;
// Configure HNSW index parameters
options.hnsw_config = Some(HnswConfig {
m: 32, // Connections per layer (16-64 typical)
ef_construction: 200, // Build-time accuracy (100-500 typical)
ef_search: 100, // Search-time accuracy (50-200 typical)
max_elements: 10_000_000, // Maximum vectors
});
let db = VectorDB::new(options)?;
use ruvector_core::{DbOptions, QuantizationConfig};
let mut options = DbOptions::default();
options.dimensions = 384;
// Enable scalar quantization (4x compression)
options.quantization = Some(QuantizationConfig::Scalar);
// Or product quantization (8-32x compression)
options.quantization = Some(QuantizationConfig::Product {
subspaces: 8, // Number of subspaces
k: 256, // Codebook size
});
let db = VectorDB::new(options)?;
// Main database interface
pub struct VectorDB { /* ... */ }
// Vector entry with optional ID and metadata
pub struct VectorEntry {
pub id: Option<VectorId>,
pub vector: Vec<f32>,
pub metadata: Option<HashMap<String, serde_json::Value>>,
}
// Search query parameters
pub struct SearchQuery {
pub vector: Vec<f32>,
pub k: usize,
pub filter: Option<HashMap<String, serde_json::Value>>,
pub ef_search: Option<usize>,
}
// Search result with score
pub struct SearchResult {
pub id: VectorId,
pub score: f32,
pub vector: Option<Vec<f32>>,
pub metadata: Option<HashMap<String, serde_json::Value>>,
}
impl VectorDB {
// Create new database with options
pub fn new(options: DbOptions) -> Result<Self>;
// Create with just dimensions (uses defaults)
pub fn with_dimensions(dimensions: usize) -> Result<Self>;
// Insert single vector
pub fn insert(&self, entry: VectorEntry) -> Result<VectorId>;
// Insert multiple vectors
pub fn insert_batch(&self, entries: Vec<VectorEntry>) -> Result<Vec<VectorId>>;
// Search for similar vectors
pub fn search(&self, query: SearchQuery) -> Result<Vec<SearchResult>>;
// Delete vector by ID
pub fn delete(&self, id: &str) -> Result<bool>;
// Get vector by ID
pub fn get(&self, id: &str) -> Result<Option<VectorEntry>>;
// Get total count
pub fn len(&self) -> Result<usize>;
// Check if empty
pub fn is_empty(&self) -> Result<bool>;
}
pub enum DistanceMetric {
Euclidean, // L2 distance - default for embeddings
Cosine, // Cosine similarity (1 - similarity)
DotProduct, // Negative dot product (for maximization)
Manhattan, // L1 distance
}
// Hybrid search (dense + sparse)
use ruvector_core::{HybridSearch, HybridConfig};
let hybrid = HybridSearch::new(HybridConfig {
alpha: 0.7, // Balance between dense (0.7) and sparse (0.3)
..Default::default()
});
// Filtered search with expressions
use ruvector_core::{FilteredSearch, FilterExpression};
let filtered = FilteredSearch::new(db);
let expr = FilterExpression::And(vec![
FilterExpression::Equals("category".to_string(), json!("books")),
FilterExpression::GreaterThan("price".to_string(), json!(10.0)),
]);
// MMR diversification
use ruvector_core::{MMRSearch, MMRConfig};
let mmr = MMRSearch::new(MMRConfig {
lambda: 0.5, // Balance relevance (0.5) and diversity (0.5)
..Default::default()
});
Operation Flat Index HNSW Index
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
Search (1K vecs) ~0.1ms ~0.2ms
Search (100K vecs) ~10ms ~0.5ms
Search (1M vecs) ~100ms <1ms
Insert ~0.1ms ~1ms
Batch (1000) ~50ms ~500ms
Configuration Memory Recall
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
Full Precision (f32) ~1.5GB 100%
Scalar Quantization ~400MB 98%
Product Quantization ~200MB 95%
Binary Quantization ~50MB 85%
Configuration QPS Latency (p50)
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
Single Thread ~2,000 ~0.5ms
Multi-Thread (8 cores) ~50,000 <0.5ms
With SIMD ~80,000 <0.3ms
With Quantization ~100,000 <0.2ms
let options = DbOptions {
dimensions: 384,
distance_metric: DistanceMetric::Cosine,
hnsw_config: Some(HnswConfig {
m: 64,
ef_construction: 500,
ef_search: 200,
max_elements: 10_000_000,
}),
quantization: None, // Full precision
..Default::default()
};
let options = DbOptions {
dimensions: 384,
distance_metric: DistanceMetric::DotProduct,
hnsw_config: Some(HnswConfig {
m: 16,
ef_construction: 100,
ef_search: 50,
max_elements: 10_000_000,
}),
quantization: Some(QuantizationConfig::Binary),
..Default::default()
};
let options = DbOptions::default(); // Recommended defaults
# Build with default features
cargo build --release
# Build without SIMD
cargo build --release --no-default-features --features uuid-support
# Build for specific target with optimizations
RUSTFLAGS="-C target-cpu=native" cargo build --release
# Run all tests
cargo test
# Run with specific features
cargo test --features simd
# Run with logging
RUST_LOG=debug cargo test
# Run all benchmarks
cargo bench
# Run specific benchmark
cargo bench --bench hnsw_search
# Run with features
cargo bench --features simd
Available benchmarks:
distance_metrics - SIMD-optimized distance calculationshnsw_search - HNSW index search performancequantization_bench - Quantization techniquesbatch_operations - Batch insert/search operationscomprehensive_bench - Full system benchmarksThis crate is part of the larger Ruvector project:
Generate and view the full API documentation:
cargo doc --open --no-deps
ruvector-core is the foundation for platform-specific bindings:
We welcome contributions! See the main Contributing Guidelines for details.
Why Ruvector Core vs. Alternatives?
| Feature | Ruvector Core | hnswlib-rs | faiss-rs | qdrant |
|---|---|---|---|---|
| Pure Rust | โ | โ | โ (C++) | โ |
| SIMD | โ SimSIMD | โ | โ | โ |
| Quantization | โ Multiple | โ | โ | โ |
| Zero-Copy I/O | โ | โ | โ | โ |
| Metadata Filter | โ | โ | โ | โ |
| Hybrid Search | โ | โ | โ | โ |
| P50 Latency | <0.5ms | ~1ms | ~0.5ms | ~1ms |
| Dependencies | Minimal | Minimal | Heavy | Heavy |
MIT License - see LICENSE for details.
Built with state-of-the-art algorithms and libraries: