| Crates.io | rvlite |
| lib.rs | rvlite |
| version | 0.2.0 |
| created_at | 2025-12-29 19:15:00.397018+00 |
| updated_at | 2025-12-29 19:15:00.397018+00 |
| description | Standalone vector database with SQL, SPARQL, and Cypher - powered by RuVector WASM |
| homepage | |
| repository | https://github.com/ruvnet/ruvector |
| max_upload_size | |
| id | 2011132 |
| size | 1,426,803 |
Status: Proof of Concept (v0.1.0)
RvLite is a lightweight, standalone vector database that runs entirely in WebAssembly. It provides SQL, SPARQL, and Cypher query interfaces, along with graph neural networks and self-learning capabilities.
A complete vector database that runs anywhere JavaScript runs:
RvLite is a thin orchestration layer over battle-tested WASM crates:
┌─────────────────────────────────────────┐
│ RvLite (Orchestration) │
│ ├─ SQL executor │
│ ├─ SPARQL executor │
│ ├─ Storage adapter │
│ └─ Unified WASM API │
└──────────────┬──────────────────────────┘
│ depends on (100% reuse)
▼
┌──────────────────────────────────────────┐
│ Existing WASM Crates │
├──────────────────────────────────────────┤
│ • ruvector-core (vectors, SIMD) │
│ • ruvector-wasm (storage, indexing) │
│ • ruvector-graph-wasm (Cypher) │
│ • ruvector-gnn-wasm (GNN layers) │
│ • sona (ReasoningBank learning) │
│ • micro-hnsw-wasm (ultra-fast HNSW) │
└──────────────────────────────────────────┘
import { RvLite } from '@rvlite/wasm';
// Create database
const db = await RvLite.create();
// SQL with vector search
await db.sql(`
CREATE TABLE docs (
id SERIAL PRIMARY KEY,
content TEXT,
embedding VECTOR(384)
)
`);
await db.sql(`
SELECT id, content, embedding <=> $1 AS distance
FROM docs
ORDER BY distance
LIMIT 10
`, [queryVector]);
// Cypher graph queries
await db.cypher(`
CREATE (a:Person {name: 'Alice'})-[:KNOWS]->(b:Person {name: 'Bob'})
`);
// SPARQL RDF queries
await db.sparql(`
SELECT ?name WHERE {
?person foaf:name ?name .
}
`);
// GNN embeddings
const embeddings = await db.gnn.computeEmbeddings('social_network', [
db.gnn.createLayer('gcn', { inputDim: 128, outputDim: 64 })
]);
// Self-learning with ReasoningBank
await db.learning.recordTrajectory({ state: [0.1], action: 2, reward: 1.0 });
await db.learning.train({ algorithm: 'q-learning', iterations: 1000 });
This is a proof of concept to validate:
# Install wasm-pack
curl https://rustwasm.github.io/wasm-pack/installer/init.sh -sSf | sh
# Build for web
cd crates/rvlite
wasm-pack build --target web --release
# Build for Node.js
wasm-pack build --target nodejs --release
# Run Rust unit tests
cargo test
# Run WASM tests (requires Chrome/Firefox)
wasm-pack test --headless --chrome
wasm-pack test --headless --firefox
# Build optimized
wasm-pack build --release
# Check size
ls -lh pkg/*.wasm
du -sh pkg/
See /crates/rvlite/docs/ for comprehensive documentation:
00_EXISTING_WASM_ANALYSIS.md - Analysis of existing WASM infrastructure01_SPECIFICATION.md - Complete requirements specification02_API_SPECIFICATION.md - TypeScript API design03_IMPLEMENTATION_ROADMAP.md - Original 5-week timeline04_REVISED_ARCHITECTURE_MAX_REUSE.md - Optimized 2-3 week plan05_ARCHITECTURE_REVIEW_AND_VALIDATION.md - Architecture validationSPARC_OVERVIEW.md - SPARC methodology overviewTarget: < 3MB gzipped
Expected breakdown:
Total estimated: ~2.3MB gzipped ✅
This project reuses existing battle-tested WASM crates. Contributions should focus on:
MIT OR Apache-2.0
RvLite is built on the shoulders of:
ruvector-core - Vector operations and SIMDruvector-wasm - WASM vector databaseruvector-graph - Cypher and graph databaseruvector-gnn - Graph neural networkssona - Self-learning and ReasoningBankmicro-hnsw-wasm - Ultra-lightweight HNSWStatus: Proof of Concept - Architecture Validated ✅ Next Step: Build and measure bundle size