saorsa-core

Crates.iosaorsa-core
lib.rssaorsa-core
version0.10.0
created_at2025-06-30 11:55:25.693065+00
updated_at2026-01-14 18:08:23.883051+00
descriptionSaorsa - Core P2P networking library with DHT, QUIC transport, and four-word addresses
homepagehttps://github.com/dirvine/saorsa-core-foundation
repositoryhttps://github.com/dirvine/saorsa-core-foundation
max_upload_size
id1731750
size6,159,463
David Irvine (dirvine)

documentation

https://docs.rs/saorsa-core

README

Saorsa Core

CI Crates.io Documentation

Core P2P networking library for Saorsa platform with DHT, QUIC transport, dual-stack endpoints (IPv6+IPv4), and four-word endpoint encoding.

Documentation

Architecture Decision Records (ADRs)

Key design decisions are documented in docs/adr/:

ADR Title Description
ADR-001 Multi-Layer P2P Architecture Layered design separating transport, DHT, identity, and application concerns
ADR-002 Delegated Transport Using ant-quic for QUIC transport, NAT traversal, and bootstrap cache
ADR-003 Pure Post-Quantum Cryptography ML-DSA-65 and ML-KEM-768 without classical fallbacks
ADR-004 Four-Word Addresses Human-readable addressing via word encoding
ADR-005 S/Kademlia Witness Protocol Byzantine fault-tolerant DHT operations
ADR-006 EigenTrust Reputation Iterative trust computation for Sybil resistance
ADR-007 Adaptive Networking Machine learning for dynamic routing optimization
ADR-008 Bootstrap Cache Delegation Delegating bootstrap to ant-quic with Sybil protection
ADR-009 Sybil Protection Multi-layered defense against identity attacks
ADR-010 Entangled Attestation Software integrity verification via attestation chains
ADR-011 Geographic Placement Region-aware storage for regulatory compliance
ADR-012 Identity without PoW Pure cryptographic identity using ML-DSA

Features

  • P2P NAT Traversal: True peer-to-peer messaging with automatic NAT traversal (ant-quic 0.10.0+)
  • DHT (Distributed Hash Table): Advanced DHT implementation with RSPS (Root-Scoped Provider Summaries)
  • S/Kademlia Witness Protocol: Byzantine fault tolerance with geographically diverse witness attestations
  • Placement System: Intelligent shard placement with EigenTrust integration and Byzantine fault tolerance
  • QUIC Transport: High-performance networking with ant-quic
  • Four-Word Endpoints: Human‑readable network endpoints via four-word-networking (IPv4+port encodes to 4 words; decoding returns both IP and port; IPv6 word count decided by the crate).
  • Post-Quantum Cryptography: Future-ready cryptographic algorithms
  • WebRTC over QUIC: Advanced WebRTC-QUIC bridge for real-time media streaming with adaptive quality
  • Media Processing: Image and audio processing with blurhash and symphonia
  • Geographic Routing: Location-aware networking
  • Identity Management: Post-quantum ML-DSA-65 signatures (NIST Level 3). No PoW; identities hold only required keys (no embedded word address).
  • Auto-Upgrade System: Cross-platform binary updates with ML-DSA-65 signatures, rollback support, and configurable policies
  • Secure Storage: Database persistence with deadpool-sqlite + rusqlite
  • Monitoring: Prometheus metrics integration

Quick Start

Add this to your Cargo.toml:

[dependencies]
saorsa-core = "0.5.0"

Basic DHT Node

use saorsa_core::{Network, NetworkConfig, NodeId};
use tokio;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Create a new network node
    let config = NetworkConfig::default();
    let mut network = Network::new(config).await?;
    
    // Start the network
    network.start().await?;
    
    // Store some data
    let key = b"example-key";
    let value = b"example-value";
    network.store(key, value.to_vec()).await?;
    
    // Retrieve the data
    if let Some(retrieved) = network.retrieve(key).await? {
        println!("Retrieved: {:?}", retrieved);
    }
    
    Ok(())
}

P2P NAT Traversal

saorsa-core v0.5.0+ includes full P2P NAT traversal support, enabling direct peer-to-peer connections:

use saorsa_core::messaging::{MessagingService, NetworkConfig, DhtClient};
use saorsa_core::identity::FourWordAddress;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Create two messaging service instances with P2P NAT traversal (default)
    let config = NetworkConfig::default();  // Includes P2P NAT traversal

    let service1 = MessagingService::new_with_config(
        FourWordAddress("peer-one-alpha".to_string()),
        DhtClient::new()?,
        config.clone(),
    ).await?;

    let service2 = MessagingService::new_with_config(
        FourWordAddress("peer-two-beta".to_string()),
        DhtClient::new()?,
        config,
    ).await?;

    // Connect peers directly
    let addr2 = service2.listen_addrs().await[0];
    service1.connect_peer(&addr2).await?;

    // Send P2P message
    service1.send_direct_message(&addr2, b"Hello P2P!").await?;

    Ok(())
}

NAT Traversal Modes:

  • P2P Node (default): Both send and receive path validations for symmetric P2P connections
  • Client Only: Outgoing connections only, minimal resource usage
  • Disabled: No NAT traversal for private networks

Configuration Examples:

// Default P2P mode with concurrency limit of 10
let config = NetworkConfig::default();

// High-traffic P2P node
let config = NetworkConfig::p2p_node(50);

// Lightweight client
let config = NetworkConfig::client_only();

// Private network (no NAT traversal)
let config = NetworkConfig::no_nat_traversal();

Four-Word Endpoints

  • Endpoints are encoded/decoded using the four-word-networking crate's adaptive API.
  • IPv4+port → 4 words; decoding returns both IP and port. IPv6 → word count is crate‑defined.
  • Four‑words are reserved strictly for network endpoints; user identities in messaging are separate handles.

Architecture

Core Components

  1. Network Layer: QUIC-based P2P networking with automatic NAT traversal (ant-quic 0.10.0+)

  2. DHT: S/Kademlia-based DHT with RSPS optimization and witness attestations for Byzantine fault tolerance

  3. Placement System: Intelligent shard placement with weighted selection algorithms

  4. Identity: Post‑quantum cryptographic identities with ML‑DSA‑65 signatures (no PoW; no embedded four‑word address)

  5. Storage: Local and distributed content storage with audit and repair

  6. Geographic Routing: Location-aware message routing

Cryptographic Architecture

Saorsa Core implements a pure post-quantum cryptographic approach for maximum security:

  • Post‑quantum signatures: ML‑DSA‑65 (FIPS 204) for quantum‑resistant digital signatures (~128‑bit quantum security)
  • PQC Encryption: ChaCha20-Poly1305 with quantum-resistant key derivation
  • Key Exchange: ML-KEM-768 (FIPS 203) for quantum-resistant key encapsulation (~128-bit quantum security)
  • Hashing: BLAKE3 for fast, secure content addressing
  • Transport Security: QUIC with TLS 1.3 and PQC cipher suites
  • No Legacy Support: Pure PQC implementation with no classical cryptographic fallbacks

Recent Changes

  • Removed all Proof‑of‑Work (PoW) usage (identity, adaptive, placement/DHT, error types, CLI).
  • Adopted four-word-networking adaptive API; four‑words reserved for endpoints only.
  • Implemented dual‑stack listeners (IPv6 + IPv4) and Happy Eyeballs dialing.
  • Introduced UserHandle for messaging identities; migrated mentions, presence, participants, search, reactions, and read/delivered receipts to use it.

Data Flow

Application
    ↓
Network API
    ↓
Placement Engine → DHT + Geographic Routing
    ↓              ↓
    ↓         Audit & Repair
    ↓              ↓
QUIC Transport (ant-quic)
    ↓
Internet

Placement System

Saorsa Core includes an advanced placement system for optimal distribution of erasure-coded shards across the network:

use saorsa_core::placement::{
    PlacementEngine, PlacementConfig, GeographicLocation, NetworkRegion
};

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Configure placement system
    let config = PlacementConfig {
        replication_factor: (3, 8).into(), // Min 3, target 8 replicas
        byzantine_tolerance: 2.into(),      // Tolerate up to 2 Byzantine nodes
        placement_timeout: Duration::from_secs(30),
        geographic_diversity: true,
        weights: OptimizationWeights {
            trust_weight: 0.4,        // EigenTrust reputation
            performance_weight: 0.3,   // Node performance metrics
            capacity_weight: 0.2,      // Available storage capacity
            diversity_bonus: 0.1,      // Geographic/network diversity
        },
    };
    
    // Create placement engine
    let mut engine = PlacementEngine::new(config);
    
    // Place data with optimal shard distribution
    let data = b"important data to store";
    let decision = placement_orchestrator.place_data(
        data.to_vec(),
        8, // replication factor
        Some(NetworkRegion::NorthAmerica),
    ).await?;
    
    println!("Placed {} shards across {} nodes", 
             decision.shard_count, 
             decision.selected_nodes.len());
    
    Ok(())
}

Key Features

  • EigenTrust Integration: Uses reputation scores for node selection
  • Weighted Selection: Balances trust, performance, capacity, and diversity
  • Byzantine Fault Tolerance: Configurable f-out-of-3f+1 security model
  • Geographic Diversity: Ensures shards are distributed across regions
  • Continuous Monitoring: Audit system with automatic repair
  • DHT Record Types: Efficient ≤512B records with cryptographic validation
  • Hysteresis Control: Prevents repair storms with smart cooldown

Configuration

use saorsa_core::NetworkConfig;

let config = NetworkConfig {
    listen_port: 9000,
    bootstrap_nodes: vec![
        "bootstrap1.example.com:9000".parse()?,
        "bootstrap2.example.com:9000".parse()?,
    ],
    enable_four_word_addresses: true,
    dht_replication: 20,
    storage_capacity: 1024 * 1024 * 1024, // 1GB
    ..Default::default()
};

Feature Flags

  • default - Metrics and Prometheus integration
  • metrics - Prometheus metrics and monitoring
  • mocks - Test/dummy helpers for development (off by default)
  • h2_greedy - Hyperbolic greedy routing helpers in API
  • test-utils - Test utilities including mock DHT for integration tests
  • attestation - Entangled Attestation system for software integrity verification

Note: DHT, ant-quic QUIC transport, and post-quantum cryptography are always enabled. Four-word networking is a core feature.

Performance

Saorsa Core is designed for high performance:

  • Concurrent Operations: Tokio-based async runtime
  • Memory Efficiency: Zero-copy operations where possible
  • Network Optimization: QUIC with congestion control
  • Caching: Multi-level caching with Q-learning optimization

Benchmarks

Run benchmarks with:

cargo bench

Key benchmarks:

  • DHT operations: ~10,000 ops/sec
  • Storage throughput: ~100 MB/sec
  • Geographic routing: <10ms latency
  • Placement decisions: <1s for 8-node selection
  • Shard repair: Automatic with <1h detection
  • Cryptographic operations: Hardware-accelerated

Security

Saorsa Core implements defense-in-depth security designed for adversarial decentralized environments.

For complete security documentation, see docs/SECURITY_MODEL.md.

Cryptographic Foundation

  • Post-Quantum Signatures: ML-DSA-65 (FIPS 204) for quantum-resistant digital signatures (~128-bit quantum security)
  • Key Exchange: ML-KEM-768 (FIPS 203) for quantum-resistant key encapsulation
  • Symmetric Encryption: ChaCha20-Poly1305 with quantum-resistant key derivation
  • Hashing: BLAKE3 for fast, secure content addressing
  • Pure PQC: No classical cryptographic fallbacks - quantum-resistant from the ground up

Network Protection

Protection Implementation
Node Monitoring Automatic eviction after 3 consecutive failures
Reputation System EigenTrust++ with multi-factor trust scoring
Sybil Resistance IP diversity limits (/64: 1, /48: 3, /32: 10, ASN: 20)
Geographic Diversity Minimum 3 regions for witness quorum
Byzantine Tolerance f=2 in 3f+1 model (5 of 7 witnesses required)
Data Verification Nonce-based attestation: BLAKE3(nonce
Entangled Attestation Software integrity via EntangledId (Phase 1: soft enforcement)

Entangled Attestation (Phase 1)

The Entangled Attestation system ensures nodes are running authorized software without relying on centralized authorities or proprietary hardware. A node's identity becomes mathematically "entangled" with its software:

EntangledId = BLAKE3(public_key || binary_hash || nonce)

Key Properties:

  • Software Binding: Any modification to the binary forces a change in identity
  • Reputation Loss: Attackers cannot maintain reputation while running malicious code
  • No Hardware Trust: Pure cryptographic verification without TPM/SGX requirements
  • Graceful Migration: Phase 1 uses soft enforcement (warnings only) for network adoption

Enforcement Modes:

  • Off: Attestation disabled (development/testing)
  • Soft: Invalid attestations logged but connections allowed (Phase 1)
  • Hard: Invalid attestations rejected (future phases)

Roadmap:

  • Phase 1: Entangled Identity ✓ (current)
  • Phase 2: Core Logic Extraction (saorsa-logic no_std crate)
  • Phase 3: zkVM Integration (SP1 proofs)
  • Phase 4: VDF Heartbeats (continuous execution proofs)

Anti-Centralization

The network enforces geographic and infrastructure diversity to prevent centralization:

┌───────────────────────────────────────────────────┐
│           Geographic Witness Distribution          │
├───────────────────────────────────────────────────┤
│  Region A      Region B      Region C      ...    │
│  (max 2)       (max 2)       (max 2)              │
│     │             │             │                 │
│     └─────────────┼─────────────┘                 │
│                   ▼                               │
│        Quorum requires 3+ regions                 │
│        (prevents regional collusion)              │
└───────────────────────────────────────────────────┘
  • ASN Diversity: Max 20 nodes per autonomous system
  • Hosting Provider Limits: Stricter limits (halved) for known VPS/cloud providers
  • Eclipse Detection: Continuous routing table diversity monitoring

S/Kademlia Witness Protocol

Saorsa Core implements an advanced S/Kademlia witness system for Byzantine fault tolerance in DHT operations. This system ensures data integrity and prevents malicious nodes from corrupting stored data through cryptographically attested operations.

Overview

The witness protocol requires multiple independent nodes to cryptographically attest to DHT operations before they are considered valid. This prevents:

  • Sybil Attacks: Attackers cannot flood the network with fake identities
  • Eclipse Attacks: Honest nodes cannot be isolated from the network
  • Data Corruption: Malicious nodes cannot unilaterally modify stored data
  • Routing Manipulation: Path selection cannot be influenced by adversaries

Geographic Diversity (GeoIP Integration)

A key innovation in our witness protocol is geographic diversity enforcement using GeoIP data. Witnesses are selected to be geographically distributed, providing:

Anti-Collusion Guarantees

┌─────────────────────────────────────────────────────────┐
│                 Geographic Witness Selection             │
├─────────────────────────────────────────────────────────┤
│                                                         │
│   Region A          Region B          Region C          │
│   ┌────────┐        ┌────────┐        ┌────────┐        │
│   │Witness1│        │Witness2│        │Witness3│        │
│   │  EU    │        │  APAC  │        │   NA   │        │
│   └───┬────┘        └───┬────┘        └───┬────┘        │
│       │                 │                 │             │
│       └────────────┬────┴─────────────────┘             │
│                    │                                    │
│              Attestation Quorum                         │
│         (Geographic spread prevents                     │
│          regional collusion)                            │
└─────────────────────────────────────────────────────────┘
  • Regional Distribution: Witnesses must come from different geographic regions
  • Latency Zones: Selection considers network latency for optimal performance
  • Jurisdiction Diversity: Data is attested across legal jurisdictions
  • Infrastructure Independence: Reduces risk of correlated failures

Selection Algorithm

use saorsa_core::dht::witness::{WitnessSelector, GeographicConfig};

// Configure witness selection with geographic constraints
let config = GeographicConfig {
    min_regions: 3,           // Minimum distinct regions
    max_per_region: 2,        // Maximum witnesses per region
    prefer_low_latency: true, // Optimize for performance
    exclude_same_asn: true,   // Avoid same network provider
};

let selector = WitnessSelector::with_geographic_config(config);

// Select geographically diverse witnesses for a DHT key
let witnesses = selector.select_witnesses(
    &key,
    required_count,
    &candidate_nodes,
).await?;

Cryptographic Attestation

Each witness signs attestations using ML-DSA-65 post-quantum signatures:

use saorsa_core::dht::witness::{WitnessSigner, Attestation};

// Create a witness attestation
let attestation = Attestation {
    operation_id: operation.id(),
    key: key.clone(),
    value_hash: blake3::hash(&value),
    witness_id: my_node_id,
    timestamp: SystemTime::now(),
    geographic_region: my_region,
};

// Sign with ML-DSA-65 (post-quantum secure)
let signed = signer.sign_attestation(&attestation).await?;

Verification Protocol

use saorsa_core::dht::witness::WitnessVerifier;

// Verify a quorum of witness attestations
let verifier = WitnessVerifier::new(trust_provider);

// Verify attestations meet quorum requirements
let result = verifier.verify_quorum(
    &attestations,
    required_quorum,      // e.g., 2/3 of witnesses
    geographic_diversity, // require regional spread
).await?;

match result {
    QuorumResult::Valid => {
        // Operation is valid, proceed
    }
    QuorumResult::InsufficientWitnesses => {
        // Not enough attestations, retry
    }
    QuorumResult::GeographicViolation => {
        // Witnesses too concentrated, reselect
    }
    QuorumResult::InvalidSignatures => {
        // Cryptographic verification failed
    }
}

Security Properties

Property Guarantee
Byzantine Tolerance Tolerates f malicious nodes in 3f+1 system
Geographic Spread Minimum 3 distinct regions for attestation
Post-Quantum Security ML-DSA-65 signatures (NIST Level 3)
Sybil Resistance Geographic diversity prevents identity flooding
Forward Secrecy Each operation uses unique attestation context
Non-Repudiation Signed attestations provide audit trail

Integration with EigenTrust

Witness behavior feeds into the EigenTrust reputation system:

// Witness performance affects trust scores
trust_provider.record_witness_behavior(
    witness_id,
    WitnessBehavior::ValidAttestation,
);

// Low-trust nodes are excluded from witness selection
let eligible_witnesses = candidates
    .iter()
    .filter(|n| trust_provider.get_trust(&n.id) > MIN_WITNESS_TRUST)
    .collect();

Performance Considerations

  • Parallel Verification: Attestations verified concurrently
  • Caching: Valid attestations cached to reduce verification overhead
  • Batching: Multiple operations can share witness quorums
  • Adaptive Selection: Witness count adjusts based on data importance

WebRTC over QUIC Integration

Saorsa Core provides a unique WebRTC-over-QUIC bridge that combines the real-time capabilities of WebRTC with the performance and reliability of QUIC transport. This allows for high-quality media streaming with improved NAT traversal and congestion control.

Key Features

  • Seamless Integration: Bridge WebRTC media streams over ant-quic transport
  • Adaptive Quality: Automatic bandwidth and quality adaptation based on network conditions
  • Multiple Stream Types: Support for audio, video, screen sharing, and data channels
  • QoS Management: Intelligent Quality of Service with stream prioritization
  • Jitter Buffering: Built-in jitter buffers for smooth media playback
  • Performance Monitoring: Real-time statistics and performance metrics

Basic WebRTC-QUIC Bridge Setup

use saorsa_core::messaging::{
    WebRtcQuicBridge, QuicMediaStreamManager, StreamConfig, StreamType, QosParameters
};
use saorsa_core::transport::ant_quic_adapter::P2PNetworkNode;
use std::sync::Arc;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Create network node
    let node = Arc::new(P2PNetworkNode::new("127.0.0.1:0".parse()?).await?);
    
    // Create WebRTC-QUIC bridge
    let bridge = WebRtcQuicBridge::new(node).await?;
    
    // Create stream manager for bandwidth management
    let manager = QuicMediaStreamManager::new(2000); // 2 Mbps
    manager.start_background_tasks().await?;
    
    // Connect to peer
    let peer_addr = "192.168.1.100:9000".parse()?;
    let peer_id = bridge.connect_peer(peer_addr).await?;
    
    // Configure audio stream
    let audio_config = StreamConfig {
        stream_type: StreamType::Audio,
        codec: "opus".to_string(),
        bitrate_kbps: 64,
        sample_rate: Some(48000),
        resolution: None,
    };
    bridge.add_stream(peer_id, StreamType::Audio, audio_config).await?;
    
    // Configure video stream
    let video_config = StreamConfig {
        stream_type: StreamType::Video,
        codec: "h264".to_string(),
        bitrate_kbps: 1000,
        sample_rate: None,
        resolution: Some((1280, 720)),
    };
    bridge.add_stream(peer_id, StreamType::Video, video_config).await?;
    
    // Set QoS parameters
    manager.set_qos_params(StreamType::Audio, QosParameters::audio()).await;
    manager.set_qos_params(StreamType::Video, QosParameters::video()).await;
    
    // Start receiving packets
    let mut receiver = bridge.start_receiving().await?;
    
    // Handle incoming packets
    tokio::spawn(async move {
        while let Some((peer_id, packet)) = receiver.recv().await {
            println!("Received {} packet from {}", packet.stream_type, peer_id);
            // Process packet...
        }
    });
    
    Ok(())
}

Media Streaming Example

use saorsa_core::messaging::RtpPacket;

// Create and send RTP packets
async fn send_media_packets(
    bridge: &WebRtcQuicBridge,
    peer_id: PeerId,
) -> Result<()> {
    // Audio packet (Opus codec)
    let audio_packet = RtpPacket::new(
        96,                    // Payload type (Opus)
        1001,                  // Sequence number
        48000,                 // Timestamp (48kHz sample rate)
        0x12345678,            // SSRC identifier
        vec![0xAA; 160],       // Opus frame data (20ms @ 48kHz)
        StreamType::Audio,
    );
    bridge.send_rtp_packet(peer_id, audio_packet).await?;
    
    // Video packet (H.264 codec)
    let video_packet = RtpPacket::new(
        97,                    // Payload type (H.264)
        2001,                  // Sequence number
        90000,                 // Timestamp (90kHz for video)
        0x87654321,            // SSRC identifier
        vec![0xBB; 1200],      // H.264 NAL unit
        StreamType::Video,
    );
    bridge.send_rtp_packet(peer_id, video_packet).await?;
    
    Ok(())
}

Quality of Service (QoS) Configuration

use saorsa_core::messaging::QosParameters;

// Configure QoS for different stream types
let audio_qos = QosParameters {
    priority: 3,           // Highest priority
    max_latency_ms: 20,    // Low latency for real-time audio
    max_jitter_ms: 5,      // Minimal jitter tolerance
    target_bitrate_kbps: 64,
    max_bitrate_kbps: 128,
    min_bitrate_kbps: 32,
    loss_threshold: 1.0,   // 1% packet loss threshold
};

let video_qos = QosParameters {
    priority: 2,           // Medium priority
    max_latency_ms: 100,   // Higher latency tolerance
    max_jitter_ms: 20,     // More jitter tolerance
    target_bitrate_kbps: 1000,
    max_bitrate_kbps: 2000,
    min_bitrate_kbps: 200,
    loss_threshold: 3.0,   // 3% packet loss threshold
};

manager.set_qos_params(StreamType::Audio, audio_qos).await;
manager.set_qos_params(StreamType::Video, video_qos).await;

Bandwidth Adaptation

// Check for bandwidth adaptation recommendations
if let Some(adjustment) = manager.check_bandwidth_adaptation().await {
    match adjustment {
        BandwidthAdjustment::Increase { current, recommended } => {
            println!("Increase bandwidth: {} -> {} kbps", current, recommended);
            // Adjust encoder settings...
        }
        BandwidthAdjustment::Decrease { current, recommended } => {
            println!("Decrease bandwidth: {} -> {} kbps", current, recommended);
            // Reduce quality or bitrate...
        }
    }
}

// Check transmission capacity
let can_send_hd = manager.can_transmit(1500).await; // 1.5KB HD frame
if !can_send_hd {
    // Switch to lower resolution or quality
}

Performance Monitoring

// Get peer statistics
if let Some(stats) = bridge.get_peer_stats(peer_id).await {
    println!("Packets sent: {}", stats.packets_sent);
    println!("Packets received: {}", stats.packets_received);
    println!("Bytes transferred: {}", stats.bytes_sent);
    println!("Active streams: {}", stats.streams.len());
}

// Get stream-specific statistics
let stream_stats = manager.get_all_stats().await;
for ((peer_id, stream_type), stats) in stream_stats {
    println!("{:?} stream to {}:", stream_type, peer_id);
    println!("  RTT: {}ms", stats.rtt_ms);
    println!("  Loss: {:.2}%", stats.loss_percentage());
    println!("  Throughput: {} kbps", stats.effective_bitrate_kbps());
}

Advanced Features

Multi-Stream Management

// Configure multiple streams for comprehensive communication
bridge.add_stream(peer_id, StreamType::Audio, audio_config).await?;
bridge.add_stream(peer_id, StreamType::Video, video_config).await?;
bridge.add_stream(peer_id, StreamType::ScreenShare, screen_config).await?;
bridge.add_stream(peer_id, StreamType::Data, data_config).await?;

Custom Bridge Configuration

use saorsa_core::messaging::BridgeConfig;

let config = BridgeConfig {
    jitter_buffer_size: 100,                    // 100 packets max
    jitter_buffer_delay: Duration::from_millis(50), // 50ms buffer
    peer_timeout: Duration::from_secs(30),      // 30s peer timeout
    cleanup_interval: Duration::from_secs(5),   // Cleanup every 5s
    max_packet_size: 1500,                      // MTU consideration
    enable_adaptive_jitter: true,               // Adaptive jitter buffering
};

let bridge = WebRtcQuicBridge::new_with_config(node, config).await?;

Error Handling and Reconnection

// Robust error handling
match bridge.send_rtp_packet(peer_id, packet).await {
    Ok(_) => {
        // Packet sent successfully
    }
    Err(e) => {
        eprintln!("Failed to send packet: {}", e);
        
        // Attempt reconnection if peer disconnected
        if e.to_string().contains("not connected") {
            match bridge.connect_peer(peer_addr).await {
                Ok(new_peer_id) => {
                    // Reconfigure streams for new connection
                    configure_streams(&bridge, new_peer_id).await?;
                }
                Err(reconnect_err) => {
                    eprintln!("Reconnection failed: {}", reconnect_err);
                }
            }
        }
    }
}

Use Cases

  1. Voice Calls: Low-latency audio streaming with Opus codec
  2. Video Conferencing: Adaptive video quality with H.264/VP8 codecs
  3. Screen Sharing: High-quality desktop streaming
  4. File Transfer: Reliable data channel communication
  5. Gaming: Real-time game state synchronization
  6. IoT Streaming: Sensor data and telemetry transmission

Media Processing

Built-in media processing capabilities:

  • Images: JPEG, PNG, WebP, GIF support with blurhash
  • Audio: Full codec support via symphonia
  • Streaming: Real-time media streaming over WebRTC

Database Integration

SQLite-based persistence with migrations:

use saorsa_core::storage::Database;

let db = Database::open("./data/node.db").await?;
db.store_message(&message).await?;

Geographic Features

Location-aware networking:

  • Geographic distance calculations
  • Location-based routing
  • Regional content distribution
  • Privacy-preserving location services

Development

Building

# Standard build
cargo build --release

# With all features
cargo build --all-features

# Feature-specific build
cargo build --features "dht,quantum-resistant"

Testing

# Unit tests
cargo test

# Integration tests
cargo test --test '*'

# Property-based tests
cargo test --features "proptest"

Linting

cargo clippy --all-features -- -D warnings
cargo fmt --all

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests for new functionality
  5. Ensure all tests pass
  6. Submit a pull request

Code Style

  • Follow Rust 2024 idioms
  • Use cargo fmt for formatting
  • Ensure cargo clippy passes
  • Add documentation for public APIs
  • Include tests for all new features

License

This project is dual-licensed:

  • AGPL-3.0: Open source license for open source projects
  • Commercial: Commercial license for proprietary projects

For commercial licensing, contact: david@saorsalabs.com

Dependencies

Core Dependencies

  • tokio - Async runtime
  • futures - Future utilities
  • serde - Serialization
  • anyhow - Error handling
  • tracing - Logging

Networking

  • ant-quic (0.10.0+) - QUIC transport with P2P NAT traversal
  • four-word-networking - Human-readable addresses
  • rustls - TLS support

Cryptography

  • saorsa-pqc - Post-quantum cryptography (ML-DSA, ML-KEM, ChaCha20-Poly1305)
  • blake3 - Hashing
  • rand - Random number generation

Storage & Database

  • sqlx - Database operations
  • lru - LRU caching
  • reed-solomon-erasure - Error correction

Media & WebRTC

  • webrtc - WebRTC implementation
  • image - Image processing
  • symphonia - Audio codecs
  • rodio - Audio playback

See Cargo.toml for complete dependency list.

Changelog

See CHANGELOG.md for version history.

Support


Saorsa Labs Limited - Building the decentralized future

Commit count: 191

cargo fmt