Crates.io | scientist |
lib.rs | scientist |
version | 0.1.2 |
source | src |
created_at | 2020-06-20 20:18:36.545222 |
updated_at | 2020-07-03 01:35:28.858313 |
description | Machine Learning Algorithms in Rust |
homepage | |
repository | https://github.com/edicury/scientist |
max_upload_size | |
id | 256068 |
size | 27,206 |
Create Machine Learning abstractions to facilitate ML
pipelines.
This package does not use interop with C
or Python
, it is meant to be written 100% in Rust
.
[dependencies]
scientist = "0.1.1"
Linear Models
- Linear Regression ( Single dependant variable )
- Linear Classification ( Single dependant variable )
LinearRegressor
extern crate scientist;
use scientist::models::linear::{LinearRegression};
let x_train : Vec<Vec<f64>> = [[1.1].to_vec(), [1.3].to_vec(), [1.5].to_vec(), [2.0].to_vec(), [2.2].to_vec(), [2.9].to_vec(), [3.0].to_vec()].to_vec();
let y_train : Vec<f64> = [39343., 46205., 37731., 43525., 39891., 56642., 60150.].to_vec();
let mut model : LinearRegression = LinearRegression::new();
model.fit(&x_train, &y_train);
let preds = m_model.predict(&[[1.5].to_vec()].to_vec());
println!("Prediction {:?}", preds); // Prediction: $41434.737394958
RandomForest
- RandomForest Regression
- RandomForest Classification
Reinforcement Algorithms
- UCB
- Thompson Sampling
XGBoost
- XGBoost Regression
- XGBoost Classification