serde_json_experimental

Crates.ioserde_json_experimental
lib.rsserde_json_experimental
version1.0.29-rc1
sourcesrc
created_at2018-09-20 18:04:25.398255
updated_at2018-09-20 18:04:25.398255
descriptionA JSON serialization file format
homepage
repositoryhttps://github.com/serde-rs/json
max_upload_size
id85679
size400,256
Lanthanum (github:zxtn:lanthanum)

documentation

http://docs.serde.rs/serde_json/

README

Serde JSON   Build Status Latest Version Rustc Version 1.15+

Serde is a framework for serializing and deserializing Rust data structures efficiently and generically.


[dependencies]
serde_json = "1.0"

You may be looking for:

JSON is a ubiquitous open-standard format that uses human-readable text to transmit data objects consisting of key-value pairs.

{
  "name": "John Doe",
  "age": 43,
  "address": {
    "street": "10 Downing Street",
    "city": "London"
  },
  "phones": [
    "+44 1234567",
    "+44 2345678"
  ]
}

There are three common ways that you might find yourself needing to work with JSON data in Rust.

  • As text data. An unprocessed string of JSON data that you receive on an HTTP endpoint, read from a file, or prepare to send to a remote server.
  • As an untyped or loosely typed representation. Maybe you want to check that some JSON data is valid before passing it on, but without knowing the structure of what it contains. Or you want to do very basic manipulations like insert a key in a particular spot.
  • As a strongly typed Rust data structure. When you expect all or most of your data to conform to a particular structure and want to get real work done without JSON's loosey-goosey nature tripping you up.

Serde JSON provides efficient, flexible, safe ways of converting data between each of these representations.

Operating on untyped JSON values

Any valid JSON data can be manipulated in the following recursive enum representation. This data structure is serde_json::Value.

enum Value {
    Null,
    Bool(bool),
    Number(Number),
    String(String),
    Array(Vec<Value>),
    Object(Map<String, Value>),
}

A string of JSON data can be parsed into a serde_json::Value by the serde_json::from_str function. There is also from_slice for parsing from a byte slice &[u8] and from_reader for parsing from any io::Read like a File or a TCP stream.

extern crate serde_json;

use serde_json::{Value, Error};

fn untyped_example() -> Result<(), Error> {
    // Some JSON input data as a &str. Maybe this comes from the user.
    let data = r#"{
                    "name": "John Doe",
                    "age": 43,
                    "phones": [
                      "+44 1234567",
                      "+44 2345678"
                    ]
                  }"#;

    // Parse the string of data into serde_json::Value.
    let v: Value = serde_json::from_str(data)?;

    // Access parts of the data by indexing with square brackets.
    println!("Please call {} at the number {}", v["name"], v["phones"][0]);

    Ok(())
}

The result of square bracket indexing like v["name"] is a borrow of the data at that index, so the type is &Value. A JSON map can be indexed with string keys, while a JSON array can be indexed with integer keys. If the type of the data is not right for the type with which it is being indexed, or if a map does not contain the key being indexed, or if the index into a vector is out of bounds, the returned element is Value::Null.

When a Value is printed, it is printed as a JSON string. So in the code above, the output looks like Please call "John Doe" at the number "+44 1234567". The quotation marks appear because v["name"] is a &Value containing a JSON string and its JSON representation is "John Doe". Printing as a plain string without quotation marks involves converting from a JSON string to a Rust string with as_str() or avoiding the use of Value as described in the following section.

The Value representation is sufficient for very basic tasks but can be tedious to work with for anything more significant. Error handling is verbose to implement correctly, for example imagine trying to detect the presence of unrecognized fields in the input data. The compiler is powerless to help you when you make a mistake, for example imagine typoing v["name"] as v["nmae"] in one of the dozens of places it is used in your code.

Parsing JSON as strongly typed data structures

Serde provides a powerful way of mapping JSON data into Rust data structures largely automatically.

extern crate serde;
extern crate serde_json;

#[macro_use]
extern crate serde_derive;

use serde_json::Error;

#[derive(Serialize, Deserialize)]
struct Person {
    name: String,
    age: u8,
    phones: Vec<String>,
}

fn typed_example() -> Result<(), Error> {
    // Some JSON input data as a &str. Maybe this comes from the user.
    let data = r#"{
                    "name": "John Doe",
                    "age": 43,
                    "phones": [
                      "+44 1234567",
                      "+44 2345678"
                    ]
                  }"#;

    // Parse the string of data into a Person object. This is exactly the
    // same function as the one that produced serde_json::Value above, but
    // now we are asking it for a Person as output.
    let p: Person = serde_json::from_str(data)?;

    // Do things just like with any other Rust data structure.
    println!("Please call {} at the number {}", p.name, p.phones[0]);

    Ok(())
}

This is the same serde_json::from_str function as before, but this time we assign the return value to a variable of type Person so Serde will automatically interpret the input data as a Person and produce informative error messages if the layout does not conform to what a Person is expected to look like.

Any type that implements Serde's Deserialize trait can be deserialized this way. This includes built-in Rust standard library types like Vec<T> and HashMap<K, V>, as well as any structs or enums annotated with #[derive(Deserialize)].

Once we have p of type Person, our IDE and the Rust compiler can help us use it correctly like they do for any other Rust code. The IDE can autocomplete field names to prevent typos, which was impossible in the serde_json::Value representation. And the Rust compiler can check that when we write p.phones[0], then p.phones is guaranteed to be a Vec<String> so indexing into it makes sense and produces a String.

Constructing JSON values

Serde JSON provides a json! macro to build serde_json::Value objects with very natural JSON syntax. In order to use this macro, serde_json needs to be imported with the #[macro_use] attribute.

#[macro_use]
extern crate serde_json;

fn main() {
    // The type of `john` is `serde_json::Value`
    let john = json!({
      "name": "John Doe",
      "age": 43,
      "phones": [
        "+44 1234567",
        "+44 2345678"
      ]
    });

    println!("first phone number: {}", john["phones"][0]);

    // Convert to a string of JSON and print it out
    println!("{}", john.to_string());
}

The Value::to_string() function converts a serde_json::Value into a String of JSON text.

One neat thing about the json! macro is that variables and expressions can be interpolated directly into the JSON value as you are building it. Serde will check at compile time that the value you are interpolating is able to be represented as JSON.

let full_name = "John Doe";
let age_last_year = 42;

// The type of `john` is `serde_json::Value`
let john = json!({
  "name": full_name,
  "age": age_last_year + 1,
  "phones": [
    format!("+44 {}", random_phone())
  ]
});

This is amazingly convenient but we have the problem we had before with Value which is that the IDE and Rust compiler cannot help us if we get it wrong. Serde JSON provides a better way of serializing strongly-typed data structures into JSON text.

Creating JSON by serializing data structures

A data structure can be converted to a JSON string by serde_json::to_string. There is also serde_json::to_vec which serializes to a Vec<u8> and serde_json::to_writer which serializes to any io::Write such as a File or a TCP stream.

extern crate serde;
extern crate serde_json;

#[macro_use]
extern crate serde_derive;

use serde_json::Error;

#[derive(Serialize, Deserialize)]
struct Address {
    street: String,
    city: String,
}

fn print_an_address() -> Result<(), Error> {
    // Some data structure.
    let address = Address {
        street: "10 Downing Street".to_owned(),
        city: "London".to_owned(),
    };

    // Serialize it to a JSON string.
    let j = serde_json::to_string(&address)?;

    // Print, write to a file, or send to an HTTP server.
    println!("{}", j);

    Ok(())
}

Any type that implements Serde's Serialize trait can be serialized this way. This includes built-in Rust standard library types like Vec<T> and HashMap<K, V>, as well as any structs or enums annotated with #[derive(Serialize)].

Performance

It is fast. You should expect in the ballpark of 500 to 1000 megabytes per second deserialization and 600 to 900 megabytes per second serialization, depending on the characteristics of your data. This is competitive with the fastest C and C++ JSON libraries or even 30% faster for many use cases. Benchmarks live in the serde-rs/json-benchmark repo.

Getting help

Serde developers live in the #serde channel on irc.mozilla.org. The #rust channel is also a good resource with generally faster response time but less specific knowledge about Serde. If IRC is not your thing, we are happy to respond to GitHub issues as well.

No-std support

This crate currently requires the Rust standard library. For JSON support in Serde without a standard library, please see the serde-json-core crate.

License

Serde JSON is licensed under either of

at your option.

Contribution

Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in Serde JSON by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any additional terms or conditions.

Commit count: 1737

cargo fmt