| Crates.io | serde_rusqlite |
| lib.rs | serde_rusqlite |
| version | 0.40.0 |
| created_at | 2017-06-01 09:10:11.479621+00 |
| updated_at | 2025-07-07 13:24:58.108178+00 |
| description | Serialize/deserialize rusqlite rows |
| homepage | |
| repository | https://github.com/twistedfall/serde_rusqlite |
| max_upload_size | |
| id | 17167 |
| size | 84,714 |
Support the project | Documentation
Run:
cargo add serde_rusqlite
Or add to your Cargo.toml:
[dependencies]
serde_rusqlite = "0.40.0"
This crate provides convenience functions to bridge serde and rusqlite. With their help
you can "deserialize" [rusqlite::Row]'s into [serde::Deserialize] types and "serialize" types
implementing [serde::Serialize] into bound query arguments (positional or named) that rusqlite
expects.
Serialization of named bound arguments is only supported from structs and maps because other
serde types lack column name information. Likewise, serialization of positional bound arguments
is only supported from tuples, sequences and primitive non-iterable types. In the latter case
the result will be a single-element vector. Each serialized field or element must implement
[rusqlite::types::ToSql].
For deserialization, you can use two families of functions: from_*() and from_*_with_columns().
The most used one is the former. The latter allows you to specify column names for types that need
them but don't supply them. This includes different Map types like [std::collections::HashMap].
Specifying columns for deserialization into e.g. struct doesn't have any effect as the field list
of the struct itself will be used in any case.
SQLite only supports 5 types: NULL ([None]), INTEGER ([i64]), REAL ([f64]), TEXT ([String])
and BLOB ([Vec
Some types employ non-trivial handling, these are described below:
Serialization of u64 will fail if it can't be represented by i64 due to the SQLite limitations.
Simple enums will be serialized as strings so:
enum Gender {
M,
F,
}
will have two possible TEXT options in the database "M" and "F". Deserialization into enum
from TEXT is also supported.
[bool]s are serialized as INTEGERs 0 or 1, can be deserialized from INTEGER and REAL where
0 and 0.0 are false, anything else is true.
[f64] and [f32] values of NaN are serialized as NULLs. When deserializing such a value, [OptionNaN. The same applies to [f32].
[serde_bytes::Bytes], [serde_bytes::ByteBuf] are supported as optimized way of handling BLOBs.
unit serializes to NULL.
Only sequences of [u8] are serialized and deserialized, BLOB database type is used. It's
more optimal, though, to use [serde_bytes::Bytes] and [serde_bytes::ByteBuf] for such fields.
unit_struct serializes to struct name as TEXT. When deserializing, the check is made to ensure
that the struct name coincides with the string in the database.
use serde_derive::{Deserialize, Serialize};
use serde_rusqlite::*;
#[derive(Serialize, Deserialize, Debug, PartialEq)]
struct Example {
id: i64,
name: String,
}
let connection = rusqlite::Connection::open_in_memory().unwrap();
connection.execute("CREATE TABLE example (id INT, name TEXT)", []).unwrap();
// using structure to generate named bound query arguments
let row1 = Example { id: 1, name: "first name".into() };
connection.execute("INSERT INTO example (id, name) VALUES (:id, :name)", to_params_named(&row1).unwrap().to_slice().as_slice()).unwrap();
// and limiting the set of fields that are to be serialized
let row2 = Example { id: 10, name: "second name".into() };
connection.execute("INSERT INTO example (id, name) VALUES (2, :name)", to_params_named_with_fields(&row2, &["name"]).unwrap().to_slice().as_slice()).unwrap();
// using tuple to generate positional bound query arguments
let row2 = (3, "third name");
connection.execute("INSERT INTO example (id, name) VALUES (?, ?)", to_params(&row2).unwrap()).unwrap();
// deserializing using query() and from_rows(), the most efficient way
let mut statement = connection.prepare("SELECT * FROM example").unwrap();
let mut res = from_rows::<Example>(statement.query([]).unwrap());
assert_eq!(res.next().unwrap().unwrap(), row1);
assert_eq!(res.next().unwrap().unwrap(), Example { id: 2, name: "second name".into() });
// deserializing using query_and_then() and from_row(), incurs extra overhead in from_row() call
let mut statement = connection.prepare("SELECT * FROM example").unwrap();
let mut rows = statement.query_and_then([], from_row::<Example>).unwrap();
assert_eq!(rows.next().unwrap().unwrap(), row1);
assert_eq!(rows.next().unwrap().unwrap(), Example { id: 2, name: "second name".into() });
// deserializing using query_and_then() and from_row_with_columns(), better performance than from_row()
let mut statement = connection.prepare("SELECT * FROM example").unwrap();
let columns = columns_from_statement(&statement);
let mut rows = statement.query_and_then([], |row| from_row_with_columns::<Example>(row, &columns)).unwrap();
assert_eq!(rows.next().unwrap().unwrap(), row1);
assert_eq!(rows.next().unwrap().unwrap(), Example { id: 2, name: "second name".into() });
// deserializing using query() and from_rows_ref()
let mut statement = connection.prepare("SELECT * FROM example").unwrap();
let mut rows = statement.query([]).unwrap();
{
// only the first record is deserialized here
let mut res = from_rows_ref::<Example>(&mut rows);
assert_eq!(res.next().unwrap().unwrap(), row1);
}
// the second record is deserialized using the original Rows iterator
assert_eq!(from_row::<Example>(&rows.next().unwrap().unwrap()).unwrap(), Example { id: 2, name: "second name".into() });
MIT OR Apache-2.0