Crates.io | serdine_derive |
lib.rs | serdine_derive |
version | 0.6.0 |
source | src |
created_at | 2022-08-23 11:29:03.285788 |
updated_at | 2022-09-05 14:13:39.106173 |
description | Derive macros for serdine crate |
homepage | https://github.com/64kramsystem/serdine |
repository | https://github.com/64kramsystem/serdine |
max_upload_size | |
id | 650939 |
size | 17,750 |
Serdine is a tiny serialization library for de/serializing instances in a binary, serial format, focused on ease of use.
This is convenient for example, when interfacing with data files belonging to C programs, where the files are often the image of the in-memory instances.
This library is currently used by another project of mine (Catacomb II-64k); I'm in the process of updating it, with documentation and new features.
The crate provides de/serialization implementations for the numeric primites and arrays, in little endian format; any field, particularly those of user-defined types, can use a custom de/serialization function. De/serialization is recursive, so any type can be nested.
The de/serialization traits are extremely simple:
pub trait Serialize {
fn serialize<W: Write>(&self, w: W) -> Result<(), std::io::Error>;
}
pub trait Deserialize {
fn deserialize<R: Read>(r: R) -> Result<Self, std::io::Error>;
}
The following are examples of de/serialization:
use serdine_derive::Deserialize;
#[derive(Deserialize)]
pub struct MyNamedFieldsStruct {
pub my_i16: i16,
pub my_u32: u32,
pub my_f32: f32,
pub my_f64: f64,
pub my_arr: [u16; 2],
pub my_bool: bool,
#[deserialize = "deserialize_vec"]
pub my_vec: Vec<u8>,
}
fn deserialize_vec<R: std::io::Read>(mut r: R) -> Result<Vec<u8>, std::io::Error> {
let mut buffer = Vec::new();
r.read_to_end(&mut buffer)?;
Ok(buffer)
}
fn deserialize_named_fields_struct() {
let serialized_bytes: &[u8] = &[
0x80, 0x00,
0xBE, 0xBA, 0xFE, 0xCA,
0xC9, 0x3E, 0x7B, 0x44,
0x0C, 0x07, 0x42, 0xB2, 0x80, 0x19, 0x24, 0x40,
0x00, 0x01, 0x02, 0x03,
0xCA,
0x04, 0x05, 0x06
];
let instance = MyNamedFieldsStruct::deserialize(serialized_bytes).unwrap();
assert_eq!(0x80, instance.my_i16);
assert_eq!(0xCAFEBABE, instance.my_u32);
assert_eq!(1004.981_f32, instance.my_f32);
assert_eq!(10.04981_f64, instance.my_f64);
assert_eq!([0x0100, 0x0302], instance.my_arr);
assert_eq!(true, instance.my_bool);
assert_eq!(vec![4, 5, 6], instance.my_vec);
}
// Enums are supported, as long as they declare their representation.
#[derive(Serialize)]
#[repr(u16)]
enum MyEnum {
VarA = 0,
VarB = 1,
VarC = 65534,
}
fn serialize_enum() {
let mut serialized_instance = Vec::new();
MyEnum::VarA.serialize(&mut serialized_instance).unwrap();
MyEnum::VarC.serialize(&mut serialized_instance).unwrap();
MyEnum::VarB.serialize(&mut serialized_instance).unwrap();
let expected_bytes: &[u8] = &[
0x00, 0x00,
0xFE, 0xFF,
0x01, 0x00,
];
assert_eq!(expected_bytes, serialized_instance);
}