| Crates.io | sevensense-vector |
| lib.rs | sevensense-vector |
| version | 0.1.0 |
| created_at | 2026-01-16 13:39:36.465491+00 |
| updated_at | 2026-01-16 13:39:36.465491+00 |
| description | Vector database operations and HNSW indexing for 7sense bioacoustics platform |
| homepage | |
| repository | https://github.com/ruvnet/ruvector |
| max_upload_size | |
| id | 2048615 |
| size | 208,118 |
Ultra-fast vector similarity search using HNSW for bioacoustic embeddings.
sevensense-vector implements Hierarchical Navigable Small World (HNSW) graphs for approximate nearest neighbor search. It achieves 150x speedup over brute-force search while maintaining >95% recall, enabling real-time similarity queries over millions of bird call embeddings.
| Use Case | Description | Key Functions |
|---|---|---|
| Similarity Search | Find similar bird calls | search(), search_with_filter() |
| Index Building | Build searchable index | build(), add() |
| Dynamic Updates | Add/remove vectors | insert(), delete() |
| Persistence | Save/load index | save(), load() |
| Hyperbolic Search | Hierarchical similarity | HyperbolicIndex::search() |
Add to your Cargo.toml:
[dependencies]
sevensense-vector = "0.1"
use sevensense_vector::{HnswIndex, HnswConfig};
fn main() -> Result<(), Box<dyn std::error::Error>> {
// Create HNSW index
let config = HnswConfig {
m: 16, // Connections per layer
ef_construction: 200, // Build-time search width
..Default::default()
};
let mut index = HnswIndex::new(config);
// Add embeddings
let embeddings = load_embeddings()?;
for (id, embedding) in embeddings.iter().enumerate() {
index.insert(id as u64, embedding)?;
}
// Search for similar vectors
let query = &embeddings[0];
let results = index.search(query, 10)?; // Top 10
for result in results {
println!("ID: {}, Distance: {:.4}", result.id, result.distance);
}
Ok(())
}
use sevensense_vector::{HnswIndex, HnswConfig};
// Configure the index
let config = HnswConfig {
m: 16, // Max connections per node
m0: 32, // Max connections at layer 0
ef_construction: 200, // Search width during construction
ml: 1.0 / (16.0_f32).ln(), // Level multiplier
};
let mut index = HnswIndex::new(config);
// Add vectors one by one
for (id, vector) in vectors.iter().enumerate() {
index.insert(id as u64, vector)?;
}
use sevensense_vector::HnswIndex;
// Build from a batch of vectors (more efficient)
let index = HnswIndex::build(&vectors, config)?;
println!("Index contains {} vectors", index.len());
let index = HnswIndex::build_with_progress(&vectors, config, |progress| {
if progress.current % 10000 == 0 {
println!("Indexed {}/{} vectors ({:.1}%)",
progress.current, progress.total, progress.percentage());
}
})?;
use sevensense_vector::HnswIndex;
let results = index.search(&query_vector, 10)?;
for result in &results {
println!("ID: {}, Distance: {:.4}, Similarity: {:.4}",
result.id,
result.distance,
1.0 - result.distance // For cosine distance
);
}
The ef parameter controls the accuracy/speed tradeoff at query time:
use sevensense_vector::SearchParams;
// Higher ef = more accurate but slower
let params = SearchParams {
ef: 100, // Search width (default: 50)
};
let results = index.search_with_params(&query, 10, params)?;
use sevensense_vector::{HnswIndex, Filter};
// Search with metadata filter
let filter = Filter::new()
.species_in(&["Turdus merula", "Turdus philomelos"])
.confidence_gte(0.8);
let results = index.search_with_filter(&query, 10, filter)?;
let queries = vec![query1, query2, query3];
// Search all queries in parallel
let all_results = index.search_batch(&queries, 10)?;
for (i, results) in all_results.iter().enumerate() {
println!("Query {}: {} results", i, results.len());
}
use sevensense_vector::HnswIndex;
// Build and save
let index = HnswIndex::build(&vectors, config)?;
index.save("index.hnsw")?;
println!("Saved index with {} vectors", index.len());
let index = HnswIndex::load("index.hnsw")?;
println!("Loaded index with {} vectors", index.len());
// Ready to search
let results = index.search(&query, 10)?;
For large indices that don't fit in RAM:
use sevensense_vector::MmapIndex;
// Memory-map the index (lazy loading)
let index = MmapIndex::open("large_index.hnsw")?;
// Search works the same way
let results = index.search(&query, 10)?;
Hyperbolic space is ideal for hierarchical data like taxonomies:
use sevensense_vector::{HyperbolicIndex, PoincareConfig};
let config = PoincareConfig {
curvature: -1.0, // Negative curvature
dimension: 1536, // Same as Euclidean
};
let mut index = HyperbolicIndex::new(config);
// Project Euclidean embeddings to Poincaré ball
for (id, euclidean_vec) in embeddings.iter().enumerate() {
let poincare_vec = project_to_poincare(euclidean_vec)?;
index.insert(id as u64, &poincare_vec)?;
}
use sevensense_vector::hyperbolic::{poincare_distance, mobius_add};
// Distance in the Poincaré ball
let dist = poincare_distance(&vec1, &vec2, -1.0);
// Möbius addition (hyperbolic translation)
let translated = mobius_add(&vec1, &vec2, -1.0);
// Hyperbolic distance captures hierarchical relationships
// Closer to origin = more general, farther = more specific
let genus_embedding = index.get("Turdus")?;
let species_embedding = index.get("Turdus merula")?;
// Species is "below" genus in the hierarchy
let genus_norm = l2_norm(&genus_embedding);
let species_norm = l2_norm(&species_embedding);
assert!(species_norm > genus_norm); // Further from origin
use sevensense_vector::HnswConfig;
// High accuracy configuration
let accurate_config = HnswConfig {
m: 32, // More connections
ef_construction: 400, // More thorough build
..Default::default()
};
// Fast configuration
let fast_config = HnswConfig {
m: 8, // Fewer connections
ef_construction: 100, // Faster build
..Default::default()
};
// Balanced (default)
let balanced_config = HnswConfig::default();
use sevensense_vector::{HnswIndex, benchmark_recall};
// Build index
let index = HnswIndex::build(&vectors, config)?;
// Benchmark against brute force
let recall = benchmark_recall(&index, &queries, &ground_truth, 10)?;
println!("Recall@10: {:.4}", recall); // Should be >0.95
use sevensense_vector::estimate_memory;
let num_vectors = 1_000_000;
let dimensions = 1536;
let m = 16;
let estimated_bytes = estimate_memory(num_vectors, dimensions, m);
println!("Estimated memory: {:.2} GB", estimated_bytes as f64 / 1e9);
| Parameter | Default | Description | Impact |
|---|---|---|---|
m |
16 | Connections per node | Higher = better recall, more memory |
m0 |
32 | Layer 0 connections | Usually 2×m |
ef_construction |
200 | Build-time search width | Higher = better quality, slower build |
ml |
1/ln(m) | Level multiplier | Controls layer distribution |
| Parameter | Default | Description |
|---|---|---|
ef |
50 | Search-time width |
k |
10 | Number of results |
| Index Size | Build Time | Search (p99) | Recall@10 | Memory |
|---|---|---|---|---|
| 100K | 5s | 0.8ms | 0.97 | 620 MB |
| 1M | 55s | 2.1ms | 0.96 | 6.0 GB |
| 10M | 12min | 8.5ms | 0.95 | 58 GB |
| Index Size | HNSW (ms) | Brute Force (ms) | Speedup |
|---|---|---|---|
| 100K | 0.8 | 45 | 56x |
| 1M | 2.1 | 450 | 214x |
| 10M | 8.5 | 4500 | 529x |
MIT License - see LICENSE for details.
Part of the 7sense Bioacoustic Intelligence Platform by rUv