Crates.io | shapers |
lib.rs | shapers |
version | 0.3.0 |
source | src |
created_at | 2024-09-05 16:19:14.294348 |
updated_at | 2024-09-12 15:20:49.647483 |
description | A library for fitting shapes and operations on geometrical objects |
homepage | |
repository | https://github.com/borgesaugusto/shapers |
max_upload_size | |
id | 1364819 |
size | 71,606 |
Fitting shapes with Rust in python
Currently, only TaubinSVD and geometrical fitting are implemented.
This package is based on circle-fit. We are incorporating functions from the original work by Nikolai Chernov.
The software is available on crates.io or in PyPi.
To install in python run
pip install shapers
To install in Rust, add the following to your Cargo.toml
file
[dependencies]
shapers = "0.3.0"
Currently, the exposed functions are:
Function | Description |
---|---|
fit_geometrical(x_values: Vec<f64>, y_values: Vec<f64>) |
Calculate the geometrical mean |
taubin_svd(x_values: Vec<f64>, y_values: Vec<f64>) |
Fit a circle using Taubin SVD |
fit_lsq(x_values: Vec<f64>, y_values: Vec<f64>) |
Fit a circle using least squares |
import shapers as shs
# create example circle
circle_center = [5, 5]
circle_radius = 5
n_points = 50
theta = np.linspace(0, 2 * np.pi, n_points)
arrx = circle_center[0] + (circle_radius * np.random.normal(1, 0.1)) * np.cos(theta)
arry = circle_center[1] + (circle_radius * np.random.normal(1, 0.1)) * np.sin(theta)
# fit circle
x_center, y_center = shs.taubin_svd(arrx, arry)
# x_center, y_center = shs.fit_geometrical(arrx, arry) # alternatively
# x_center, y_center = shs.fit_lsq(arrx, arry) # alternatively
It is possible to modify the parameters of the algorithm through the FitCircleParams
class in the following wway:
# fit circle
parameters = shs.FitCircleParams()
parameters.method = "lbfgs"
parameters.precision = 1e-4
parameters.max_iterations = 1000
x_center, y_center = shs.fit_lsq(arrx, arry, parameters)
Each method might have specific parameters. For more information, please refer to the documentation of the method.
To determine if two ellipsoids are superimposed, you can use
check_ellipsoid_intersection(ellipse_a: Ellipsoid, ellipse_b: Ellipsoid, parameters: Option<EllipsoidIntersectionParameters>
.
import shapers as shs
# create example Ellipsoids
eli1 = shs.Ellipsoid(0, 0, 2, 1, 0)
eli2 = shs.Ellipsoid(4, 0, 2, 1, 0)
# check intersection
intersection = shs.check_ellipsoid_intersection(eli1, eli2)
If the value of intersection
is positive, the ellipsoids are superimposed. If it is zero, they are only touching at one point. If it is negative, they are not touching at all.
To modify the parameters, you can use the EllipsoidIntersectionParameters
class. For example:
# check intersection
parameters = shs.EllipsoidIntersectionParameters()
parameters.tolerance = 1e-4
parameters.max_iters = 1000
intersection = shs.check_ellipsoid_intersection(eli1, eli2, parameters)
// create example Ellipsoids
let ellipse1 = Ellipsoid::new(0.0, 0.0, 2.0, 1.0, 0.0);
let ellipse2 = Ellipsoid::new(4.0, 0.0, 2.0, 1.0, 0.0);
// check intersection
let parameters = ellipsoids::EllipsoidIntersectionParameters::new()
.with_tolerance(1e-6)
.with_max_iters(100);
let intersection = ellipsoids::check_ellipsoid_intersection(ellipse1, ellipse2, Some(parameters));