siraph

Crates.iosiraph
lib.rssiraph
version0.1.2
sourcesrc
created_at2020-12-28 23:12:51.752758
updated_at2020-12-29 12:58:24.090222
descriptionA node-based digital signal processing crate
homepage
repositoryhttps://github.com/gymore-z/siraph
max_upload_size
id328488
size59,220
Gymore (gymore-z)

documentation

https://docs.rs/siraph

README

The siraph crate is a node-based digital signal processing crate.

Features

  • nodes: Adds the nodes module that contains a couple of basic useful nodes as Map or Const. This feature is enabled by default.

  • math: Adds the nodes::math module that contains useful nodes related to mathematics as Add or Oscillator. This feature depends on the num-traits crate and the nodes feature.

  • random: Adds the nodes::random module that contains useful nodes related to random number generators as SampleAndHold. This feature depends on the rand crate and the nodes feature.

Example

// Using the `nodes` feature

use siraph::Graph;
use siraph::nodes::{Hold, Pulse, FromIter, Map};

let mut graph = Graph::new();

// First, we can insert nodes into the graph.

// This node just takes the values given by an iterator
// and send them into its output.
let from_iter = graph.insert(FromIter::new(std::iter::successors(Some(0u32), |&i| Some(i + 1))));

// This node infinitly outputs 4 `false` then 1 `true`.
let pulse = graph.insert(Pulse::new(4));

// This one wait for a pulse and holds the value its has in its input
// until a new pulse.
let hold = graph.insert(Hold::<u32>::new());

// Simply uses the given function to maps its input to its output.
let map = graph.insert(Map::new(|val: u32| val * val));

// Then, we can plug them together.
graph.plug(from_iter, "output", hold, "input").unwrap();
graph.plug(pulse, "output", hold, "resample").unwrap();
graph.plug(hold, "output", map, "input").unwrap();

// Once our graph is done, we can retreive values from it using a sink.
let mut sink = graph.sink(map, "output").unwrap();

// Here is a simple schem of what we have so far
/*
+------------------------+
| from_iter   output i32 >----+   +------------------------------+
+------------------------+    +---> input                        |  +----------------------+
                                  |            hold   output i32 >--> input   map   output > sink
                              +---> resample                     |  +----------------------+
+---------------------+       |   +------------------------------+
| pulse   output bool >-------+
+---------------------+
*/

// Values can be retreived with the `next` function on the sink
// Once again, the `()` is the context provided to the nodes.
assert_eq!(sink.next(), Some(0));
assert_eq!(sink.next(), Some(0));
assert_eq!(sink.next(), Some(0));
assert_eq!(sink.next(), Some(0));
assert_eq!(sink.next(), Some(0));
assert_eq!(sink.next(), Some(25));
assert_eq!(sink.next(), Some(25));
assert_eq!(sink.next(), Some(25));
assert_eq!(sink.next(), Some(25));
assert_eq!(sink.next(), Some(25));

// The sink is an iterator
for (i, val) in sink.take(1000).enumerate() {
    let i = ((i/5)*5) as u32 + 10;
    assert_eq!(val, i*i)
}

Create your own nodes

You can create your own nodes using the Node trait.

use siraph::{Node, Register, Input, Output};

// Our node will take an input and smooth it using a basic interpolation function.
#[derive(Default)]
pub struct Smooth {
    input: Input<f64>,
    output: Output<f64>,

    last_value: Option<f64>,
}

impl Node for Smooth {
    fn register(&self, r: &mut Register) {
        // This function will register the inputs and outputs of this node.
        r.input("input", &self.input);
        r.output("output", &self.output);
    }

    fn process(&mut self) {
        // It is in this function that all the processing will be done.
        const X: f64 = 1.0/3.0;

        // In our case, our computation is not very expensive but
        // in other cases, things can get complicated.
        // We can skip certain part of the processing by
        // checking if our outputs are used.
        if self.output.is_used() {
            if let Some(cur) = self.input.get() {
                if let Some(last) = self.last_value {
                    self.last_value = Some(last * X + (1.0 - X) * cur);
                    self.output.set(self.last_value);
                } else {
                    self.output.set(cur);
                    self.last_value = Some(cur);
                }
            } else {
                self.output.set(None);
            }
        }
    }

    fn reset(&mut self) {
        // In this function, the inputs of the node should not be used even
        // if they may return valid values.
        self.last_value = None;
    }
}

Todo List

  • Load VSTs as nodes
Commit count: 0

cargo fmt