| Crates.io | sklears |
| lib.rs | sklears |
| version | 0.1.0-beta.1 |
| created_at | 2025-06-30 11:57:51.990772+00 |
| updated_at | 2026-01-01 21:47:07.975999+00 |
| description | A comprehensive machine learning library in Rust, inspired by scikit-learn |
| homepage | https://github.com/cool-japan/sklears |
| repository | https://github.com/cool-japan/sklears |
| max_upload_size | |
| id | 1731758 |
| size | 357,473 |
Latest release:
0.1.0-beta.1(January 1, 2026). See the workspace release notes for highlights and upgrade guidance.
This crate exposes the top-level sklears API that bundles all subcrates into a cohesive, scikit-learn compatible experience. It provides re-exports, prelude shortcuts, and integrated feature flag management.
linear, ensemble, gpu, etc.) to keep builds lightweight.sklears-python bindings.[dependencies]
sklears = { version = "0.1.0-beta.1", features = ["linear", "ensemble", "gpu"] }
use sklears::prelude::*;
use scirs2_core::ndarray::{array, Array1};
let x = array![
[0.0, 1.0],
[1.0, 0.0],
[1.0, 1.0],
];
let y = Array1::from(vec![0, 1, 1]);
let model = RandomForestClassifier::new()
.n_estimators(200)
.fit(&x, &y)?;
let predictions = model.predict(&x)?;
0.1.0-beta.1.TODO.md.