| Crates.io | sklears-calibration |
| lib.rs | sklears-calibration |
| version | 0.1.0-beta.1 |
| created_at | 2025-10-13 15:43:00.950562+00 |
| updated_at | 2026-01-01 21:38:50.527394+00 |
| description | Probability calibration for classifiers |
| homepage | https://github.com/cool-japan/sklears |
| repository | https://github.com/cool-japan/sklears |
| max_upload_size | |
| id | 1880685 |
| size | 1,673,986 |
Latest release:
0.1.0-beta.1(January 1, 2026). See the workspace release notes for highlights and upgrade guidance.
sklears-calibration provides probability calibration tools, matching scikit-learn’s calibration module with additional Rust-centric performance improvements.
use sklears_calibration::CalibratedClassifierCV;
use sklears_ensemble::RandomForestClassifier;
let base = RandomForestClassifier::builder()
.n_estimators(200)
.n_jobs(-1)
.build();
let calibrated = CalibratedClassifierCV::builder()
.base_estimator(base)
.method("sigmoid")
.cv(5)
.build();
let fitted = calibrated.fit(&x_train, &y_train)?;
let probas = fitted.predict_proba(&x_test)?;
0.1.0-beta.1.TODO.md.