| Crates.io | sklears-compose |
| lib.rs | sklears-compose |
| version | 0.1.0-beta.1 |
| created_at | 2025-10-13 16:43:02.668657+00 |
| updated_at | 2026-01-01 21:41:41.780928+00 |
| description | Composite estimators and transformers |
| homepage | https://github.com/cool-japan/sklears |
| repository | https://github.com/cool-japan/sklears |
| max_upload_size | |
| id | 1880768 |
| size | 17,699,019 |
Latest release:
0.1.0-beta.1(January 1, 2026). See the workspace release notes for highlights and upgrade guidance.
sklears-compose implements pipelines, column transformers, target transformers, and composite estimator utilities matching scikit-learn’s compose module.
Pipeline and FeatureUnion implementations with parallel execution support.sklears-python.use sklears_compose::{Pipeline, make_column_transformer};
use sklears_preprocessing::{StandardScaler, OneHotEncoder};
use sklears_linear::LinearRegression;
let preprocessor = make_column_transformer()
.with_transformer("numeric", StandardScaler::default(), vec![0, 1, 2])
.with_transformer("categorical", OneHotEncoder::default(), vec![3])
.build();
let pipeline = Pipeline::builder()
.add_step("preprocess", preprocessor)
.add_step("model", LinearRegression::default())
.build();
let fitted = pipeline.fit(&x_train, &y_train)?;
let predictions = fitted.predict(&x_test)?;
0.1.0-beta.1 recorded 10,013 passes with zero failures.TODO.md.