| Crates.io | sklears-discriminant-analysis |
| lib.rs | sklears-discriminant-analysis |
| version | 0.1.0-beta.1 |
| created_at | 2025-10-13 13:52:33.819547+00 |
| updated_at | 2026-01-01 21:34:23.860043+00 |
| description | Linear and Quadratic Discriminant Analysis |
| homepage | https://github.com/cool-japan/sklears |
| repository | https://github.com/cool-japan/sklears |
| max_upload_size | |
| id | 1880536 |
| size | 1,811,157 |
Latest release:
0.1.0-beta.1(January 1, 2026). See the workspace release notes for highlights and upgrade guidance.
sklears-discriminant-analysis implements Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), and related subspace methods with scikit-learn compatible APIs. The crate emphasizes numerical robustness, GPU acceleration, and seamless integration with the broader sklears ecosystem.
use sklears_discriminant_analysis::LinearDiscriminantAnalysis;
use scirs2_core::ndarray::{array, Array1};
let x = array![
[1.0, 2.0],
[1.5, 1.8],
[5.0, 8.0],
[6.0, 9.0],
];
let y = Array1::from(vec![0, 0, 1, 1]);
let lda = LinearDiscriminantAnalysis::builder()
.solver("svd")
.shrinkage(None)
.n_components(Some(1))
.build();
let fitted = lda.fit(&x, &y)?;
let predictions = fitted.predict(&x)?;
0.1.0-beta.1 release.TODO.md.