sklears-dummy

Crates.iosklears-dummy
lib.rssklears-dummy
version0.1.0-beta.1
created_at2025-10-13 15:33:03.85885+00
updated_at2026-01-01 21:38:32.455119+00
descriptionDummy estimators for baseline comparisons
homepagehttps://github.com/cool-japan/sklears
repositoryhttps://github.com/cool-japan/sklears
max_upload_size
id1880676
size1,112,641
KitaSan (cool-japan)

documentation

README

sklears-dummy

Crates.io Documentation License Minimum Rust Version

Latest release: 0.1.0-beta.1 (January 1, 2026). See the workspace release notes for highlights and upgrade guidance.

Overview

sklears-dummy implements baseline estimators for regression and classification, mirroring scikit-learn’s dummy module. These models provide sanity checks, benchmarking baselines, and quick data diagnostics.

Key Features

  • Strategies: Mean, median, constant, stratified, most frequent, uniform, and custom priors.
  • Compatibility: Works with classification, regression, multi-output, and probabilistic evaluation.
  • Pipelines: Seamless integration with sklears pipelines, metrics, and inspection tooling.
  • Diagnostics: Utilities for baseline comparisons and sanity checks during experimentation.

Quick Start

use sklears_dummy::DummyClassifier;
use scirs2_core::ndarray::{array, Array1};

let x = array![
    [0.0, 1.0],
    [1.0, 0.0],
    [1.0, 1.0],
];
let y = Array1::from(vec![0, 1, 1]);

let dummy = DummyClassifier::builder()
    .strategy("most_frequent")
    .random_state(Some(42))
    .build();

let fitted = dummy.fit(&x, &y)?;
let predictions = fitted.predict(&x)?;

Status

  • Included in the 11,292 passing workspace tests for 0.1.0-beta.1.
  • Perfect for establishing baselines before deploying advanced models.
  • Future enhancements (time-series baselines, streaming priors) logged in TODO.md.
Commit count: 0

cargo fmt