| Crates.io | sklears-ensemble |
| lib.rs | sklears-ensemble |
| version | 0.1.0-beta.1 |
| created_at | 2025-10-13 15:52:58.225611+00 |
| updated_at | 2026-01-01 21:39:08.454418+00 |
| description | Ensemble methods for sklears: Random Forest, Gradient Boosting, AdaBoost |
| homepage | https://github.com/cool-japan/sklears |
| repository | https://github.com/cool-japan/sklears |
| max_upload_size | |
| id | 1880699 |
| size | 1,080,642 |
Latest release:
0.1.0-beta.1(January 1, 2026). See the workspace release notes for highlights and upgrade guidance.
sklears-ensemble delivers bagging, boosting, stacking, voting, and random forest implementations with scikit-learn parity and Rust-first performance.
use sklears_ensemble::RandomForestClassifier;
use scirs2_core::ndarray::{array, Array1};
let x = array![
[0.0, 1.0, 2.0],
[1.0, 0.5, 2.1],
[0.5, 2.0, 1.5],
];
let y = Array1::from(vec![0, 1, 0]);
let forest = RandomForestClassifier::builder()
.n_estimators(500)
.max_depth(Some(10))
.n_jobs(-1)
.bootstrap(true)
.build();
let fitted = forest.fit(&x, &y)?;
let predictions = fitted.predict(&x)?;
0.1.0-beta.1.TODO.md.