| Crates.io | sklears-feature-extraction |
| lib.rs | sklears-feature-extraction |
| version | 0.1.0-beta.1 |
| created_at | 2025-10-13 14:43:15.263709+00 |
| updated_at | 2026-01-01 21:36:06.420534+00 |
| description | Feature extraction from raw data (text, images) |
| homepage | https://github.com/cool-japan/sklears |
| repository | https://github.com/cool-japan/sklears |
| max_upload_size | |
| id | 1880607 |
| size | 1,949,072 |
Latest release:
0.1.0-beta.1(January 1, 2026). See the workspace release notes for highlights and upgrade guidance.
sklears-feature-extraction contains text, signal, and image feature transformers designed to mirror scikit-learn’s feature extraction API with Rust-first performance.
use sklears_feature_extraction::text::TfidfVectorizer;
let docs = vec![
"Rust brings fearless concurrency",
"Machine learning in Rust is fast",
];
let vectorizer = TfidfVectorizer::builder()
.ngram_range((1, 2))
.min_df(1)
.max_features(Some(4096))
.build();
let tfidf = vectorizer.fit_transform(&docs)?;
0.1.0-beta.1.TODO.md.