| Crates.io | sklears-feature-selection |
| lib.rs | sklears-feature-selection |
| version | 0.1.0-beta.1 |
| created_at | 2025-10-13 14:33:18.877296+00 |
| updated_at | 2026-01-01 21:35:43.284711+00 |
| description | Feature selection algorithms for sklears - scikit-learn compatible ML in Rust |
| homepage | https://github.com/cool-japan/sklears |
| repository | https://github.com/cool-japan/sklears |
| max_upload_size | |
| id | 1880594 |
| size | 1,836,823 |
Latest release:
0.1.0-beta.1(January 1, 2026). See the workspace release notes for highlights and upgrade guidance.
sklears-feature-selection brings the complete scikit-learn feature selection toolbox to Rust, including filter, wrapper, and embedded methods. The crate underpins AutoML workflows, feature pipelines, and inspection utilities across the sklears project.
use sklears_feature_selection::{SequentialFeatureSelector, Strategy};
use sklears_linear::LogisticRegression;
let estimator = LogisticRegression::builder()
.max_iter(200)
.multi_class("auto")
.build();
let selector = SequentialFeatureSelector::builder()
.estimator(estimator)
.strategy(Strategy::Forward)
.n_features_to_select(5)
.n_jobs(4)
.build();
let fitted = selector.fit(&x_train, &y_train)?;
let x_selected = fitted.transform(&x_train)?;
0.1.0-beta.1.TODO.md.