| Crates.io | sklears-gaussian-process |
| lib.rs | sklears-gaussian-process |
| version | 0.1.0-beta.1 |
| created_at | 2025-10-13 13:34:02.20671+00 |
| updated_at | 2026-01-01 21:34:04.423382+00 |
| description | Gaussian Process models for regression and classification |
| homepage | https://github.com/cool-japan/sklears |
| repository | https://github.com/cool-japan/sklears |
| max_upload_size | |
| id | 1880523 |
| size | 905,761 |
Latest release:
0.1.0-beta.1(January 1, 2026). See the workspace release notes for highlights and upgrade guidance.
sklears-gaussian-process offers Gaussian Process regression and classification tooling with scikit-learn compatible APIs, expanded kernel catalogs, and high-performance Rust implementations.
use sklears_gaussian_process::{GaussianProcessRegressor, kernels::RBF};
use scirs2_core::ndarray::{array, Array1};
let x = array![
[0.0],
[0.4],
[0.8],
[1.2],
];
let y = Array1::from(vec![0.0, 0.2, -0.1, 0.3]);
let gpr = GaussianProcessRegressor::builder()
.kernel(RBF::new(1.0))
.alpha(1e-6)
.normalize_y(true)
.random_state(Some(123))
.build();
let fitted = gpr.fit(&x, &y)?;
let (mean, std) = fitted.predict(&x, true)?;
0.1.0-beta.1 ships with all 11,160 tests passing.TODO.md.