| Crates.io | sklears-impute |
| lib.rs | sklears-impute |
| version | 0.1.0-beta.1 |
| created_at | 2025-10-13 16:53:03.891044+00 |
| updated_at | 2026-01-01 21:42:56.435688+00 |
| description | Missing value imputation strategies |
| homepage | https://github.com/cool-japan/sklears |
| repository | https://github.com/cool-japan/sklears |
| max_upload_size | |
| id | 1880781 |
| size | 1,881,376 |
Latest release:
0.1.0-beta.1(January 1, 2026). See the workspace release notes for highlights and upgrade guidance.
sklears-impute provides data imputation algorithms and utilities that match scikit-learn’s impute module, with Rust-first performance improvements and extended functionality.
use sklears_impute::SimpleImputer;
use scirs2_core::ndarray::array;
let x = array![
[1.0, f64::NAN, 2.0],
[3.0, 4.0, f64::NAN],
[f64::NAN, 6.0, 1.0],
];
let imputer = SimpleImputer::builder()
.strategy("mean")
.add_missing_value(f64::NAN)
.build();
let imputed = imputer.fit_transform(&x)?;
0.1.0-beta.1.TODO.md.