sklears-inspection

Crates.iosklears-inspection
lib.rssklears-inspection
version0.1.0-beta.1
created_at2025-10-13 17:03:05.007679+00
updated_at2026-01-01 21:43:28.662856+00
descriptionModel inspection and interpretation tools
homepagehttps://github.com/cool-japan/sklears
repositoryhttps://github.com/cool-japan/sklears
max_upload_size
id1880805
size2,076,470
KitaSan (cool-japan)

documentation

README

sklears-inspection

Crates.io Documentation License Minimum Rust Version

Latest release: 0.1.0-beta.1 (January 1, 2026). See the workspace release notes for highlights and upgrade guidance.

Overview

sklears-inspection provides model interpretation tools, mirroring scikit-learn’s inspection module with additional Rust-first performance and visualization hooks.

Key Features

  • Permutation Importance: CPU/GPU implementations with grouped feature support.
  • Partial Dependence: Fast vectorized PDP and ICE computations for dense and sparse models.
  • Feature Influence: SHAP-style approximations, ALE plots, and interaction strength metrics.
  • Visualization Hooks: Data structures aligned with sklears-python plotting adapters.

Quick Start

use sklears_inspection::permutation_importance;
use sklears_ensemble::RandomForestClassifier;

let model = RandomForestClassifier::builder()
    .n_estimators(500)
    .n_jobs(-1)
    .build()
    .fit(&x_train, &y_train)?;

let importance = permutation_importance(
    &model,
    &x_val,
    &y_val,
    None,
    10,
)?;

println!("Mean importance for feature 0: {}", importance.importances_mean[0]);

Status

  • Extensively covered by workspace integration tests; all 11,160 tests passed for 0.1.0-beta.1.
  • Cross-crate sanity checks ensure compatibility with pipelines, model selection, and visualization crates.
  • Further enhancements (GPU ICE surfaces, streaming importance) tracked in TODO.md.
Commit count: 0

cargo fmt