| Crates.io | sklears-isotonic |
| lib.rs | sklears-isotonic |
| version | 0.1.0-beta.1 |
| created_at | 2025-10-13 15:13:05.398039+00 |
| updated_at | 2026-01-01 21:37:09.056515+00 |
| description | Isotonic regression |
| homepage | https://github.com/cool-japan/sklears |
| repository | https://github.com/cool-japan/sklears |
| max_upload_size | |
| id | 1880649 |
| size | 1,908,102 |
Latest release:
0.1.0-beta.1(January 1, 2026). See the workspace release notes for highlights and upgrade guidance.
sklears-isotonic delivers isotonic regression utilities that mirror scikit-learn while taking advantage of Rust performance. The crate powers monotonic calibration, pairwise ranking, and constrained curve fitting across the wider sklears ecosystem.
ndarray inputs and sparse CSR matrices.sklears preprocessing, model selection, and calibration APIs.use sklears_isotonic::IsotonicRegression;
use scirs2_core::ndarray::{array, Array1};
let x = array![0.0, 1.0, 2.0, 3.0, 4.0];
let y = Array1::from(vec![0.1, 0.4, 0.3, 0.8, 0.9]);
let model = IsotonicRegression::builder()
.increasing(true)
.y_min(0.0)
.y_max(1.0)
.build();
let fitted = model.fit(&x, &y)?;
let predictions = fitted.predict(&x)?;
0.1.0-beta.1.TODO.md within this crate.