| Crates.io | sklears-kernel-approximation |
| lib.rs | sklears-kernel-approximation |
| version | 0.1.0-beta.1 |
| created_at | 2025-10-13 15:23:06.600463+00 |
| updated_at | 2026-01-01 21:38:04.382624+00 |
| description | Kernel approximation methods |
| homepage | https://github.com/cool-japan/sklears |
| repository | https://github.com/cool-japan/sklears |
| max_upload_size | |
| id | 1880665 |
| size | 1,971,098 |
Latest release:
0.1.0-beta.1(January 1, 2026). See the workspace release notes for highlights and upgrade guidance.
sklears-kernel-approximation houses fast kernel feature map transformers, enabling scalable kernel methods for large datasets. The implementations track the scikit-learn 1.5 API while exploiting Rust's parallelism and SIMD acceleration.
sklears pipelines, grid search, and calibration stages.use sklears_kernel_approximation::RBFSampler;
use scirs2_core::ndarray::Array2;
let features: Array2<f64> = // load your data
Array2::zeros((1024, 32));
let transformer = RBFSampler::builder()
.gamma(0.5)
.n_components(4096)
.random_state(Some(42))
.build();
let mapped = transformer.fit_transform(&features)?;
0.1.0-beta.1.TODO.md.