| Crates.io | sklears-linear |
| lib.rs | sklears-linear |
| version | 0.1.0-beta.1 |
| created_at | 2025-10-13 12:13:12.748956+00 |
| updated_at | 2026-01-01 21:30:49.14782+00 |
| description | Linear models for sklears: linear regression, logistic regression, and GLMs |
| homepage | https://github.com/cool-japan/sklears |
| repository | https://github.com/cool-japan/sklears |
| max_upload_size | |
| id | 1880451 |
| size | 1,762,438 |
High-performance linear models for Rust with 14-20x speedup (validated) over scikit-learn, featuring advanced solvers, numerical stability, and GPU acceleration.
Latest release:
0.1.0-beta.1(January 1, 2026). See the workspace release notes for highlights and upgrade guidance.
sklears-linear provides comprehensive linear modeling capabilities:
use sklears_linear::{LinearRegression, Ridge, Lasso, ElasticNet};
use ndarray::array;
// Basic linear regression
let model = LinearRegression::default();
let X = array![[1.0, 2.0], [2.0, 4.0], [3.0, 6.0]];
let y = array![2.0, 4.0, 6.0];
let fitted = model.fit(&X, &y)?;
let predictions = fitted.predict(&X)?;
// Ridge regression with regularization
let ridge = Ridge::builder()
.alpha(1.0)
.solver(RidgeSolver::Cholesky)
.build();
// Lasso with coordinate descent
let lasso = Lasso::builder()
.alpha(0.1)
.max_iter(1000)
.tol(1e-4)
.build();
// ElasticNet combining L1 and L2
let elastic = ElasticNet::builder()
.alpha(0.5)
.l1_ratio(0.5)
.build();
use sklears_linear::{ADMMSolver, CoordinateDescentSolver, ProximalGradientSolver};
// ADMM for distributed optimization
let admm = ADMMSolver::builder()
.rho(1.0)
.max_iter(500)
.abstol(1e-4)
.reltol(1e-3)
.build();
// Coordinate descent for L1 regularization
let cd = CoordinateDescentSolver::builder()
.selection_rule(SelectionRule::Cyclic)
.build();
use sklears_linear::{LinearRegression, Solver};
// Automatic method selection based on condition number
let stable_model = LinearRegression::builder()
.solver(Solver::Auto) // Chooses based on matrix condition
.check_condition(true)
.build();
// Iterative refinement for ill-conditioned problems
let refined = LinearRegression::builder()
.solver(Solver::QR)
.iterative_refinement(true)
.build();
use sklears_linear::sparse::{SparseLinearRegression};
use sprs::CsMat;
// Efficient sparse matrix operations
let sparse_X = CsMat::from_dense(...);
let model = SparseLinearRegression::default();
let fitted = model.fit(&sparse_X, &y)?;
use sklears_linear::{BayesianRidge, VariationalBayesRegression};
// Bayesian ridge with automatic relevance determination
let bayesian = BayesianRidge::builder()
.n_iter(300)
.compute_score(true)
.build();
// Variational Bayes for uncertainty quantification
let vb = VariationalBayesRegression::builder()
.credible_interval(0.95)
.build();
let fitted = vb.fit(&X, &y)?;
let (predictions, lower, upper) = fitted.predict_with_uncertainty(&X)?;
let model = Ridge::builder()
.alpha(1.0)
.n_jobs(4) // Use 4 threads
.build();
use sklears_linear::{RidgeCV, LassoCV};
// Ridge with built-in cross-validation
let ridge_cv = RidgeCV::builder()
.alphas(vec![0.1, 1.0, 10.0])
.cv(5)
.build();
// Lasso with efficient path computation
let lasso_cv = LassoCV::builder()
.n_alphas(100)
.cv(10)
.build();
let model = Lasso::builder()
.alpha(0.1)
.early_stopping(true)
.validation_fraction(0.2)
.n_iter_no_change(5)
.build();
use sklears_linear::{HuberRegressor, RANSACRegressor};
// Huber regression for outliers
let huber = HuberRegressor::builder()
.epsilon(1.35)
.alpha(0.0001)
.build();
// RANSAC for severe outliers
let ransac = RANSACRegressor::builder()
.min_samples(0.5)
.residual_threshold(5.0)
.build();
use sklears_linear::QuantileRegressor;
// Median regression (50th percentile)
let median = QuantileRegressor::builder()
.quantile(0.5)
.solver(QuantileSolver::InteriorPoint)
.build();
// Multiple quantiles
let quantiles = vec![0.1, 0.5, 0.9];
for q in quantiles {
let model = QuantileRegressor::new(q);
// Fit and predict...
}
Performance comparisons on standard datasets:
| Model | scikit-learn | sklears-linear | Speedup |
|---|---|---|---|
| Linear Regression | 2.3ms | 0.3ms | 7.7x |
| Ridge (Cholesky) | 1.8ms | 0.2ms | 9.0x |
| Lasso (CD) | 15ms | 1.2ms | 12.5x |
| ElasticNet | 18ms | 1.5ms | 12.0x |
With GPU acceleration (coming soon):
sklears-linear/
├── models/ # Core linear models
├── solvers/ # Optimization algorithms
├── regularization/ # L1, L2, ElasticNet
├── robust/ # Robust regression methods
├── bayesian/ # Bayesian linear models
├── sparse/ # Sparse matrix support
└── gpu/ # GPU acceleration (WIP)
We welcome contributions! See CONTRIBUTING.md.
Licensed under either of:
@software{sklears_linear,
title = {sklears-linear: High-Performance Linear Models for Rust},
author = {COOLJAPAN OU (Team KitaSan)},
year = {2026},
url = {https://github.com/cool-japan/sklears}
}