| Crates.io | sklears-model-selection |
| lib.rs | sklears-model-selection |
| version | 0.1.0-beta.1 |
| created_at | 2025-10-13 16:12:58.182355+00 |
| updated_at | 2026-01-01 21:40:03.017591+00 |
| description | Model selection utilities for sklears: cross-validation, grid search, train-test split |
| homepage | https://github.com/cool-japan/sklears |
| repository | https://github.com/cool-japan/sklears |
| max_upload_size | |
| id | 1880723 |
| size | 2,865,044 |
Latest release:
0.1.0-beta.1(January 1, 2026). See the workspace release notes for highlights and upgrade guidance.
sklears-model-selection implements the full suite of scikit-learn model selection utilities—grid search, random search, halving strategies, cross-validation splits, and scoring helpers—optimized for Rust performance and concurrency.
GridSearchCV, RandomizedSearchCV, HalvingGridSearch, HalvingRandomSearch, Bayesian/Adaptive search prototypes.make_scorer, scorer registry, multi-metric evaluation, and custom scorer plugins.use sklears_model_selection::{GridSearchCV, ParamGrid};
use sklears_linear::LogisticRegression;
let estimator = LogisticRegression::builder()
.max_iter(200)
.multi_class("auto")
.build();
let param_grid = ParamGrid::builder()
.add("C", vec![0.1, 1.0, 10.0])
.add("penalty", vec!["l2".into()])
.build();
let grid_search = GridSearchCV::builder()
.estimator(estimator)
.param_grid(param_grid)
.cv(5)
.n_jobs(8)
.scoring("f1_macro")
.build();
let fitted = grid_search.fit(&x_train, &y_train)?;
let best_params = fitted.best_params();
0.1.0-beta.1.TODO.md.