| Crates.io | sklears-multioutput |
| lib.rs | sklears-multioutput |
| version | 0.1.0-beta.1 |
| created_at | 2025-10-13 16:32:51.451509+00 |
| updated_at | 2026-01-01 21:40:44.871089+00 |
| description | Multi-output regression and classification |
| homepage | https://github.com/cool-japan/sklears |
| repository | https://github.com/cool-japan/sklears |
| max_upload_size | |
| id | 1880758 |
| size | 1,697,906 |
Latest release:
0.1.0-beta.1(January 1, 2026). See the workspace release notes for highlights and upgrade guidance.
sklears-multioutput implements multi-output regression and classification wrappers that allow any estimator to generalize to multi-label and multi-output settings, mirroring scikit-learn’s multioutput module.
use sklears_multioutput::MultiOutputRegressor;
use sklears_linear::Ridge;
let base_estimator = Ridge::builder()
.alpha(1.0)
.fit_intercept(true)
.build();
let wrapper = MultiOutputRegressor::new(base_estimator);
let fitted = wrapper.fit(&x_train, &y_train)?;
let predictions = fitted.predict(&x_test)?;
0.1.0-beta.1.TODO.md.