| Crates.io | sklears-semi-supervised |
| lib.rs | sklears-semi-supervised |
| version | 0.1.0-beta.1 |
| created_at | 2025-10-13 14:23:18.653782+00 |
| updated_at | 2026-01-01 21:35:23.502226+00 |
| description | Semi-supervised learning algorithms |
| homepage | https://github.com/cool-japan/sklears |
| repository | https://github.com/cool-japan/sklears |
| max_upload_size | |
| id | 1880583 |
| size | 1,435,143 |
Latest release:
0.1.0-beta.1(January 1, 2026). See the workspace release notes for highlights and upgrade guidance.
sklears-semi-supervised implements semi-supervised learning algorithms that align with scikit-learn’s API, covering label propagation, self-training, and graph-based methods.
use sklears_semi_supervised::LabelSpreading;
use scirs2_core::ndarray::{array, Array1};
let x = array![
[0.0, 1.0],
[1.0, 0.0],
[1.0, 1.0],
[0.5, 0.2],
];
let y = Array1::from(vec![0, 1, -1, -1]); // -1 denotes unlabeled
let model = LabelSpreading::builder()
.kernel("rbf")
.gamma(0.5)
.max_iter(100)
.tol(1e-3)
.build();
let fitted = model.fit(&x, &y)?;
let inferred = fitted.transduced_labels();
0.1.0-beta.1.TODO.md.