sklears-simd

Crates.iosklears-simd
lib.rssklears-simd
version0.1.0-beta.1
created_at2025-10-13 11:51:59.536618+00
updated_at2026-01-01 21:26:55.854634+00
descriptionHigh-performance SIMD acceleration primitives for the Sklears machine learning ecosystem
homepagehttps://github.com/cool-japan/sklears
repositoryhttps://github.com/cool-japan/sklears
max_upload_size
id1880415
size3,873,948
KitaSan (cool-japan)

documentation

README

sklears-simd

Crates.io Documentation License Minimum Rust Version

Latest release: 0.1.0-beta.1 (January 1, 2026). See the workspace release notes for highlights and upgrade guidance.

Overview

sklears-simd exposes low-level SIMD, GPU, and hardware acceleration utilities used across the sklears ecosystem. While primarily an internal crate, it is documented for contributors building new high-performance components.

Key Features

  • Vector Abstractions: Portable SIMD types (f32x4, f32x8, f32x16) with architecture-specific intrinsics.
  • Alignment & Memory: Alignment helpers, prefetching hints, cache-aware allocation strategies.
  • GPU Bridges: CUDA/WebGPU adapters, Tensor Core pathways, and multi-GPU orchestration helpers.
  • Benchmark Harnesses: Criterion-based benchmarks and profiling utilities for micro-optimizations.

Quick Peek

use sklears_simd::vector::F32x4;

let a = F32x4::new(1.0, 2.0, 3.0, 4.0);
let b = F32x4::splat(2.0);
let result = a.mul(b);
assert_eq!(result.horizontal_sum(), 20.0);

Status

  • Core building block validated by the 11,292 passing workspace tests for 0.1.0-beta.1.
  • Powers SIMD/GPU acceleration in linear models, neighbors, metrics, and more.
  • Contributor roadmap (new architectures, auto-vectorization tooling) maintained in TODO.md.
Commit count: 0

cargo fmt