| Crates.io | slamkit-rs |
| lib.rs | slamkit-rs |
| version | 0.3.0 |
| created_at | 2025-11-05 19:33:11.407002+00 |
| updated_at | 2025-11-08 08:33:37.955107+00 |
| description | A Rust library for implementing SLAM systems |
| homepage | |
| repository | https://github.com/mostlykiguess/slam-rs |
| max_upload_size | |
| id | 1918471 |
| size | 402,700 |
Trying to implement a SLAM system in Rust.
Build with Cargo:
cargo build --release
Run visual odometry example:
# Use default KITTI intrinsics
cargo run --example visual_odometry /path/to/video.mp4
# Specify custom camera intrinsics
cargo run --example visual_odometry /path/to/video.mp4 -- --fx 500 --fy 500 --cx 320 --cy 240
Run point cloud generation with real-time 3D visualization (Rerun):
# With Rerun 3D viewer (shows map, trajectory, matches, video in real-time!)
cargo run --example point_cloud --features rerun /path/to/video.mp4 -- --rerun
# Or save to PLY file (default, no Rerun)
cargo run --example point_cloud /path/to/video.mp4 -- --save-ply
# With custom camera intrinsics
cargo run --example point_cloud --features rerun /path/to/video.mp4 -- --rerun --fx 718.856 --fy 718.856 --cx 607.1928 --cy 185.2157
Run feature detection visualization:
cargo run --example visualize_features /path/to/video.mp4
feature: ORB feature detection and matchingodometry: Camera intrinsics, pose estimation, trajectory trackingmapping: Keyframe selection, 3D point triangulation, map points, bundle adjustmentvisualize_features: Real-time feature detection and matching visualizationvisual_odometry: Full VO pipeline with trajectory tracking and visualizationpoint_cloud: 3D point cloud reconstruction with triangulation (use --features rerun --rerun for rerun viz!)See TODO for development status.