created_at2024-02-09 19:21:38.44621
updated_at2024-02-12 15:11:31.372785
descriptionAn on-chain randomness service for Solana programs
Jackson Jessup (jessupjn)



Solana Randomness Service Lite

The Solana Randomness Service uses a Switchboard SGX enabled oracle to provide randomness to any Solana program using a callback instruction.

Program ID: RANDMo5gFnqnXJW5Z52KNmd24sAo95KAd5VbiCtq5Rh

NOTE: This program ID is applicable for mainnet-beta and devnet.

See the crate solana-randomness-service for the full CPI interface.

Request Lifecycle

  1. User's program invokes the simple_randomness_v1 instruction with a CPI call along with the number of randomness bytes, the custom callback instruction, and the priority fee config
    • Creates a SimpleRandomnessV1Account account
    • Sets the custom callback
    • Wraps funds into an escrow to reward the oracle for fulfilling the request
  2. Off-chain SGX enabled oracle reads the request account
    • Generates random bytes inside of the enclave
    • Builds a txn with your callback and desired priority fees
    • Simulates the txn. If successful, relays the txn on-chain. If error, relays an error instruction with the error message which is viewable in an explorer.
  3. Transaction relayed on-chain
    • Oracle rewarded for fulfilling request
    • Oracle invokes the users callback instruction
    • Request account is closed and the rent-exemption is returned to the original payer


Add the solana_randomness_service to your Cargo.toml

solana-randomness-service-lite = "1"

See the example program below on how to integrate the Solana Randomness Service into your Anchor program.

  1. Call the simple_randomness_v1 instruction with your payer, callback, and your desired priority fee config
  2. Build the callback isntruction that the randomness service will invoke with your requested randomness bytes
use anchor_lang::prelude;
use solana_randomness_service_lite::{SimpleRandomnessV1Request, ID as SolanaRandomnessServiceID};


pub mod solana_randomness_consumer {
    use super::*;

    pub fn request_randomness(ctx: Context<RequestRandomness>) -> anchor_lang::prelude::Result<()> {
        msg!("Requesting randomness...");

        let request = SimpleRandomnessV1Request {
            request: ctx.accounts.randomness_request.to_account_info(),
            escrow: ctx.accounts.randomness_escrow.to_account_info(),
            state: ctx.accounts.randomness_state.to_account_info(),
            mint: ctx.accounts.randomness_mint.to_account_info(),
            payer: ctx.accounts.payer.to_account_info(),
            system_program: ctx.accounts.system_program.to_account_info(),
            token_program: ctx.accounts.token_program.to_account_info(),
            associated_token_program: ctx.accounts.associated_token_program.to_account_info(),
            8, // Request 8 bytes of randomness
                    AccountMeta::new_readonly(ctx.accounts.randomness_state.key(), true).into(),
                    AccountMeta::new_readonly(ctx.accounts.randomness_request.key(), false).into(),
                [190, 217, 49, 162, 99, 26, 73, 234].to_vec(), // Our callback ixn discriminator. The oracle will append the randomness bytes to the end
            &Some(solana_randomness_service_lite::TransactionOptions {
                compute_units: Some(1_000_000),
                compute_unit_price: Some(100),

        // Here we can emit some event to index our requests


    pub fn consume_randomness(
        _ctx: Context<ConsumeRandomness>,
        result: Vec<u8>,
    ) -> anchor_lang::prelude::Result<()> {
        msg!("Randomness received: {:?}", result);

pub struct RequestRandomness<'info> {
    /// CHECK: manually check programID and executable status
        constraint = randomness_service.key() == SolanaRandomnessServiceID,
        constraint = randomness_service.executable,
    pub randomness_service: AccountInfo<'info>,

    /// The account that will be created on-chain to hold the randomness request.
    /// Used by the off-chain oracle to pickup the request and fulfill it.
    /// CHECK: todo
        owner = system_program.key(),
        constraint = randomness_request.data_len() == 0 && randomness_request.lamports() == 0,
    pub randomness_request: AccountInfo<'info>,

    /// The TokenAccount that will store the funds for the randomness request.
    /// CHECK: todo
        owner = system_program.key(),
        constraint = randomness_escrow.data_len() == 0 && randomness_escrow.lamports() == 0,
    pub randomness_escrow: AccountInfo<'info>,

    /// The randomness service's state account. Responsible for storing the
    /// reward escrow and the cost per random byte.
        seeds = [b"STATE"],
        bump = randomness_state.bump,
        seeds::program = randomness_service.key(),
    pub randomness_state: Box<Account<'info, solana_randomness_service::State>>,

    /// The token mint to use for paying for randomness requests.
    #[account(address = NativeMint::ID)]
    pub randomness_mint: Account<'info, Mint>,

    /// The account that will pay for the randomness request.
    pub payer: Signer<'info>,

    /// The Solana System program. Used to allocate space on-chain for the randomness_request account.
    pub system_program: Program<'info, System>,

    /// The Solana Token program. Used to transfer funds to the randomness escrow.
    pub token_program: Program<'info, Token>,

    /// The Solana Associated Token program. Used to create the TokenAccount for the randomness escrow.
    pub associated_token_program: Program<'info, AssociatedToken>,

Typescript Client

The typescript client can be used to interact with the randomness service off-chain.

npm i @switchboard-xyz/solana-randomness-service

The randomness service client can be initialized from an anchor provider.

Switchboard Labs provides a set of off-chain oracles to fulfill any requests on devnet and mainnet.

For localnet, the RandomnessService will initialize itself and create its own Switchboard infrastructure. When you await a request to be settled, the randomness service will check and fulfill the request itself.

import * as anchor from "@coral-xyz/anchor";
import { RandomnessService } from "@switchboard-xyz/solana-randomness-service";

const provider = anchor.AnchorProvider.env();
const randomnessService = await RandomnessService.fromProvider(provider);

// Create a keypair for our request account. This account will be automatically closed on settlement and
// the rent will be returned to the original payer.
const requestKeypair = anchor.web3.Keypair.generate();

// Start watching for the settled event before triggering the request.
// If on localnet this will fulfill the randomness request for you in the background.
const settledRandomnessEventPromise = randomnessService.awaitSettledEvent(

// your program makes a CPI request to the RandomnessService
const signature = await program.methods
    randomnessService: randomnessService.programId,
    randomnessRequest: requestKeypair.publicKey,
    randomnessEscrow: anchor.utils.token.associatedAddress({
      owner: requestKeypair.publicKey,
    randomnessState: randomnessService.accounts.state,
    payer: provider.wallet.publicKey,

// Await the response from the Switchboard Service
const [settledRandomnessEvent, settledSlot] =
  await settledRandomnessEventPromise;
Commit count: 0

cargo fmt