| Crates.io | sora_ai_video |
| lib.rs | sora_ai_video |
| version | 67.0.63 |
| created_at | 2026-01-05 02:43:30.605586+00 |
| updated_at | 2026-01-05 02:43:30.605586+00 |
| description | High-quality integration for https://supermaker.ai/video/sora-ai-video/ |
| homepage | https://supermaker.ai/video/sora-ai-video/ |
| repository | https://github.com/qy-upup/sora-ai-video |
| max_upload_size | |
| id | 2023000 |
| size | 10,977 |
A Rust crate designed to simplify the process of generating and manipulating video content powered by AI. This library provides tools for video creation, editing, and analysis, enabling developers to integrate advanced video capabilities into their applications.
Add the following line to your Cargo.toml file under the [dependencies] section:
toml
sora-ai-video = "0.1.0" # Replace with the actual version number
Here are a few examples demonstrating how to use the sora-ai-video crate:
1. Generating a Video from Text Prompt:
This example shows how to generate a short video clip based on a text description. rust use sora_ai_video::video_generator::VideoGenerator;
#[tokio::main]
async fn main() -> Result<(), Box
// Save the video data to a file (e.g., video.mp4)
std::fs::write("video.mp4", video_data)?;
println!("Video generated successfully!");
Ok(())
}
2. Extracting Frames from a Video:
This example demonstrates how to extract individual frames from an existing video file. rust use sora_ai_video::video_processor::VideoProcessor;
fn main() -> Result<(), Box
std::fs::create_dir_all(output_dir)?;
processor.extract_frames(video_path, output_dir)?;
println!("Frames extracted successfully!");
Ok(())
}
3. Applying a Style Transfer to a Video:
This example illustrates how to apply a specific style (e.g., painting style) to an existing video. This requires a pre-trained style transfer model. rust use sora_ai_video::video_editor::VideoEditor;
#[tokio::main]
async fn main() -> Result<(), Box
editor.apply_style_transfer(input_video, style_image, output_video).await?;
println!("Style transfer applied successfully!");
Ok(())
}
4. Analyzing Video Content for Object Detection:
This example shows how to analyze a video and detect objects within the frames. This functionality depends on an integrated object detection model. rust use sora_ai_video::video_analyzer::VideoAnalyzer;
#[tokio::main]
async fn main() -> Result<(), Box
let object_detections = analyzer.detect_objects(video_path).await?;
println!("Object detections: {:?}", object_detections);
Ok(())
}
The sora-ai-video crate provides the following key features:
MIT This crate is part of the sora-ai-video ecosystem. For advanced features and enterprise-grade tools, visit: https://supermaker.ai/video/sora-ai-video/