| Crates.io | survival |
| lib.rs | survival |
| version | 1.2.0 |
| created_at | 2025-12-28 05:14:54.18718+00 |
| updated_at | 2026-01-25 16:05:03.150249+00 |
| description | A high-performance survival analysis library written in Rust with Python bindings |
| homepage | |
| repository | https://github.com/Cameron-Lyons/survival |
| max_upload_size | |
| id | 2008256 |
| size | 4,714,520 |
A high-performance survival analysis library written in Rust, with a Python API powered by PyO3 and maturin.
pip install survival
Install maturin:
pip install maturin
Build the Python wheel:
maturin build --release
Install the wheel:
pip install target/wheels/survival-*.whl
For development:
maturin develop
from survival import AaregOptions, aareg
data = [
[1.0, 0.0, 0.5],
[2.0, 1.0, 1.5],
[3.0, 0.0, 2.5],
]
variable_names = ["time", "event", "covariate1"]
# Create options with required parameters (formula, data, variable_names)
options = AaregOptions(
formula="time + event ~ covariate1",
data=data,
variable_names=variable_names,
)
# Optional: modify default values via setters
# options.weights = [1.0, 1.0, 1.0]
# options.qrtol = 1e-8
# options.dfbeta = True
result = aareg(options)
print(result)
from survival import PSpline
x = [0.1 * i for i in range(100)]
pspline = PSpline(
x=x,
df=10,
theta=1.0,
eps=1e-6,
method="GCV",
boundary_knots=(0.0, 10.0),
intercept=True,
penalty=True,
)
pspline.fit()
from survival import perform_concordance1_calculation
time_data = [1.0, 2.0, 3.0, 4.0, 5.0, 1.0, 2.0, 3.0, 4.0, 5.0]
weights = [1.0, 1.0, 1.0, 1.0, 1.0]
indices = [0, 1, 2, 3, 4]
ntree = 5
result = perform_concordance1_calculation(time_data, weights, indices, ntree)
print(f"Concordance index: {result['concordance_index']}")
from survival import perform_cox_regression_frailty
result = perform_cox_regression_frailty(
time_data=[...],
status_data=[...],
covariates=[...],
# ... other parameters
)
from survival import perform_pyears_calculation
result = perform_pyears_calculation(
time_data=[...],
weights=[...],
# ... other parameters
)
from survival import survfitkm, SurvFitKMOutput
# Example survival data
time = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]
status = [1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0] # 1 = event, 0 = censored
weights = [1.0] * len(time) # Optional: equal weights
result = survfitkm(
time=time,
status=status,
weights=weights,
entry_times=None, # Optional: entry times for left-truncation
position=None, # Optional: position flags
reverse=False, # Optional: reverse time order
computation_type=0 # Optional: computation type
)
print(f"Time points: {result.time}")
print(f"Survival estimates: {result.estimate}")
print(f"Standard errors: {result.std_err}")
print(f"Number at risk: {result.n_risk}")
from survival import finegray, FineGrayOutput
# Example competing risks data
tstart = [0.0, 0.0, 0.0, 0.0]
tstop = [1.0, 2.0, 3.0, 4.0]
ctime = [0.5, 1.5, 2.5, 3.5] # Cut points
cprob = [0.1, 0.2, 0.3, 0.4] # Cumulative probabilities
extend = [True, True, False, False] # Whether to extend intervals
keep = [True, True, True, True] # Which cut points to keep
result = finegray(
tstart=tstart,
tstop=tstop,
ctime=ctime,
cprob=cprob,
extend=extend,
keep=keep
)
print(f"Row indices: {result.row}")
print(f"Start times: {result.start}")
print(f"End times: {result.end}")
print(f"Weights: {result.wt}")
from survival import survreg, SurvivalFit, DistributionType
# Example survival data
time = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]
status = [1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0] # 1 = event, 0 = censored
covariates = [
[1.0, 2.0],
[1.5, 2.5],
[2.0, 3.0],
[2.5, 3.5],
[3.0, 4.0],
[3.5, 4.5],
[4.0, 5.0],
[4.5, 5.5],
]
# Fit parametric survival model
result = survreg(
time=time,
status=status,
covariates=covariates,
weights=None, # Optional: observation weights
offsets=None, # Optional: offset values
initial_beta=None, # Optional: initial coefficient values
strata=None, # Optional: stratification variable
distribution="weibull", # "extreme_value", "logistic", "gaussian", "weibull", or "lognormal"
max_iter=20, # Optional: maximum iterations
eps=1e-5, # Optional: convergence tolerance
tol_chol=1e-9, # Optional: Cholesky tolerance
)
print(f"Coefficients: {result.coefficients}")
print(f"Log-likelihood: {result.log_likelihood}")
print(f"Iterations: {result.iterations}")
print(f"Variance matrix: {result.variance_matrix}")
print(f"Convergence flag: {result.convergence_flag}")
from survival import CoxPHModel, Subject
# Create a Cox PH model
model = CoxPHModel()
# Or create with data
covariates = [[1.0, 2.0], [2.0, 3.0], [1.5, 2.5]]
event_times = [1.0, 2.0, 3.0]
censoring = [1, 1, 0] # 1 = event, 0 = censored
model = CoxPHModel.new_with_data(covariates, event_times, censoring)
# Fit the model
model.fit(n_iters=10)
# Get results
print(f"Baseline hazard: {model.baseline_hazard}")
print(f"Risk scores: {model.risk_scores}")
print(f"Coefficients: {model.get_coefficients()}")
# Predict on new data
new_covariates = [[1.0, 2.0], [2.0, 3.0]]
predictions = model.predict(new_covariates)
print(f"Predictions: {predictions}")
# Calculate Brier score
brier = model.brier_score()
print(f"Brier score: {brier}")
# Compute survival curves for new covariates
new_covariates = [[1.0, 2.0], [2.0, 3.0]]
time_points = [0.0, 1.0, 2.0, 3.0, 4.0, 5.0] # Optional: specific time points
times, survival_curves = model.survival_curve(new_covariates, time_points)
print(f"Time points: {times}")
print(f"Survival curves: {survival_curves}") # One curve per covariate set
# Create and add subjects
subject = Subject(
id=1,
covariates=[1.0, 2.0],
is_case=True,
is_subcohort=True,
stratum=0
)
model.add_subject(subject)
from survival import coxmart
# Example survival data
time = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]
status = [1, 1, 0, 1, 0, 1, 1, 0] # 1 = event, 0 = censored
score = [0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2] # Risk scores
# Calculate martingale residuals
residuals = coxmart(
time=time,
status=status,
score=score,
weights=None, # Optional: observation weights
strata=None, # Optional: stratification variable
method=0, # Optional: method (0 = Breslow, 1 = Efron)
)
print(f"Martingale residuals: {residuals}")
from survival import survdiff2, SurvDiffResult
# Example: Compare survival between two groups
time = [1.0, 2.0, 3.0, 4.0, 5.0, 1.5, 2.5, 3.5, 4.5, 5.5]
status = [1, 1, 0, 1, 0, 1, 1, 1, 0, 1]
group = [1, 1, 1, 1, 1, 2, 2, 2, 2, 2] # Group 1 and Group 2
# Perform log-rank test (rho=0 for standard log-rank)
result = survdiff2(
time=time,
status=status,
group=group,
strata=None, # Optional: stratification variable
rho=0.0, # 0.0 = log-rank, 1.0 = Wilcoxon, other = generalized
)
print(f"Observed events: {result.observed}")
print(f"Expected events: {result.expected}")
print(f"Chi-squared statistic: {result.chi_squared}")
print(f"Degrees of freedom: {result.degrees_of_freedom}")
print(f"Variance matrix: {result.variance}")
The library includes 30 classic survival analysis datasets:
from survival import load_lung, load_aml, load_veteran
# Load the lung cancer dataset
lung = load_lung()
print(f"Columns: {lung['columns']}")
print(f"Number of rows: {len(lung['data'])}")
# Load the acute myelogenous leukemia dataset
aml = load_aml()
# Load the veteran's lung cancer dataset
veteran = load_veteran()
Available datasets:
load_lung() - NCCTG Lung Cancer Dataload_aml() - Acute Myelogenous Leukemia Survival Dataload_veteran() - Veterans' Administration Lung Cancer Studyload_ovarian() - Ovarian Cancer Survival Dataload_colon() - Colon Cancer Dataload_pbc() - Primary Biliary Cholangitis Dataload_cgd() - Chronic Granulomatous Disease Dataload_bladder() - Bladder Cancer Recurrencesload_heart() - Stanford Heart Transplant Dataload_kidney() - Kidney Catheter Dataload_rats() - Rat Treatment Dataload_stanford2() - Stanford Heart Transplant Data (Extended)load_udca() - UDCA Clinical Trial Dataload_myeloid() - Acute Myeloid Leukemia Clinical Trialload_flchain() - Free Light Chain Dataload_transplant() - Liver Transplant Dataload_mgus() - Monoclonal Gammopathy Dataload_mgus2() - Monoclonal Gammopathy Data (Updated)load_diabetic() - Diabetic Retinopathy Dataload_retinopathy() - Retinopathy Dataload_gbsg() - German Breast Cancer Study Group Dataload_rotterdam() - Rotterdam Tumor Bank Dataload_logan() - Logan Unemployment Dataload_nwtco() - National Wilms Tumor Study Dataload_solder() - Solder Joint Dataload_tobin() - Tobin's Tobit Dataload_rats2() - Rat Tumorigenesis Dataload_nafld() - Non-Alcoholic Fatty Liver Disease Dataload_cgd0() - CGD Baseline Dataload_pbcseq() - PBC Sequential DataCore Models:
AaregOptions: Configuration options for Aalen's additive regression modelPSpline: Penalized spline class for smooth covariate effectsCoxPHModel: Cox proportional hazards model classSubject: Subject data structure for Cox PH modelsConditionalLogisticRegression: Conditional logistic regression modelClogitDataSet: Dataset for conditional logistic regressionSurvival Curves:
SurvFitKMOutput: Output from Kaplan-Meier survival curve fittingSurvfitKMOptions: Options for Kaplan-Meier fittingKaplanMeierConfig: Configuration for Kaplan-MeierSurvFitAJ: Output from Aalen-Johansen survival curve fittingNelsonAalenResult: Output from Nelson-Aalen estimatorStratifiedKMResult: Output from stratified Kaplan-MeierParametric Models:
SurvivalFit: Output from parametric survival regressionSurvregConfig: Configuration for parametric survival regressionDistributionType: Distribution types for parametric models (extreme_value, logistic, gaussian, weibull, lognormal)FineGrayOutput: Output from Fine-Gray competing risks modelStatistical Tests:
SurvDiffResult: Output from survival difference testsLogRankResult: Output from log-rank testTrendTestResult: Output from trend testsTestResult: General test result outputProportionalityTest: Output from proportional hazards testSurvObrienResult: Output from O'Brien transformationValidation:
BootstrapResult: Output from bootstrap confidence interval calculationsCVResult: Output from cross-validationCalibrationResult: Output from calibration analysisPredictionResult: Output from prediction functionsRiskStratificationResult: Output from risk stratificationTdAUCResult: Output from time-dependent AUC calculationRMST and Survival Metrics:
RMSTResult: Output from RMST calculationRMSTComparisonResult: Output from RMST comparison between groupsMedianSurvivalResult: Output from median survival calculationCumulativeIncidenceResult: Output from cumulative incidence calculationNNTResult: Number needed to treat resultLandmark Analysis:
LandmarkResult: Output from landmark analysisConditionalSurvivalResult: Output from conditional survival calculationHazardRatioResult: Output from hazard ratio calculationSurvivalAtTimeResult: Output from survival at specific timesLifeTableResult: Output from life table calculationPower and Sample Size:
SampleSizeResult: Output from sample size calculationsAccrualResult: Output from accrual calculationsUtilities:
CoxCountOutput: Output from Cox counting functionsSplitResult: Output from time-splittingCondenseResult: Output from data condensingSurv2DataResult: Output from survival-to-data conversionTimelineResult: Output from timeline conversionIntervalResult: Output from interval calculationsLinkFunctionParams: Link function parametersCchMethod: Case-cohort method specificationCohortData: Cohort data structureModel Fitting:
aareg(options): Fit Aalen's additive regression modelsurvreg(...): Fit parametric accelerated failure time modelsperform_cox_regression_frailty(...): Fit Cox proportional hazards model with frailtySurvival Curves:
survfitkm(...): Fit Kaplan-Meier survival curvessurvfitkm_with_options(...): Fit Kaplan-Meier with configuration optionssurvfitaj(...): Fit Aalen-Johansen survival curves (multi-state)nelson_aalen_estimator(...): Calculate Nelson-Aalen estimatorstratified_kaplan_meier(...): Calculate stratified Kaplan-Meier curvesagsurv4(...): Anderson-Gill survival calculations (version 4)agsurv5(...): Anderson-Gill survival calculations (version 5)Statistical Tests:
survdiff2(...): Perform survival difference tests (log-rank, Wilcoxon, etc.)logrank_test(...): Perform log-rank testfleming_harrington_test(...): Perform Fleming-Harrington weighted testlogrank_trend(...): Perform log-rank trend testlrt_test(...): Likelihood ratio testwald_test_py(...): Wald testscore_test_py(...): Score testph_test(...): Proportional hazards assumption testsurvobrien(...): O'Brien transformation for survival dataResiduals:
coxmart(...): Calculate Cox martingale residualsagmart(...): Calculate Anderson-Gill martingale residualsschoenfeld_residuals(...): Calculate Schoenfeld residualscox_score_residuals(...): Calculate Cox score residualsConcordance:
perform_concordance1_calculation(...): Calculate concordance index (version 1)perform_concordance3_calculation(...): Calculate concordance index (version 3)perform_concordance_calculation(...): Calculate concordance index (version 5)compute_concordance(...): General concordance calculationValidation:
bootstrap_cox_ci(...): Bootstrap confidence intervals for Cox modelsbootstrap_survreg_ci(...): Bootstrap confidence intervals for parametric modelscv_cox_concordance(...): Cross-validation for Cox model concordancecv_survreg_loglik(...): Cross-validation for parametric model log-likelihoodcalibration(...): Model calibration assessmentpredict_cox(...): Predictions from Cox modelsrisk_stratification(...): Risk group stratificationtd_auc(...): Time-dependent AUC calculationbrier(...): Calculate Brier scoreintegrated_brier(...): Calculate integrated Brier scoreRMST and Survival Metrics:
rmst(...): Calculate restricted mean survival timermst_comparison(...): Compare RMST between groupssurvival_quantile(...): Calculate survival quantiles (median, etc.)cumulative_incidence(...): Calculate cumulative incidencenumber_needed_to_treat(...): Calculate NNTLandmark Analysis:
landmark_analysis(...): Perform landmark analysislandmark_analysis_batch(...): Perform batch landmark analysis at multiple time pointsconditional_survival(...): Calculate conditional survivalhazard_ratio(...): Calculate hazard ratiossurvival_at_times(...): Calculate survival at specific time pointslife_table(...): Generate life tablePower and Sample Size:
sample_size_survival(...): Calculate required sample sizesample_size_survival_freedman(...): Sample size using Freedman's methodpower_survival(...): Calculate statistical powerexpected_events(...): Calculate expected number of eventsUtilities:
finegray(...): Fine-Gray competing risks model data preparationperform_pyears_calculation(...): Calculate person-years of observationperform_pystep_calculation(...): Perform step calculationsperform_pystep_simple_calculation(...): Perform simple step calculationsperform_score_calculation(...): Calculate score statisticsperform_agscore3_calculation(...): Calculate score statistics (version 3)survsplit(...): Split survival data at specified timessurvcondense(...): Condense survival data by collapsing adjacent intervalssurv2data(...): Convert survival objects to data formatto_timeline(...): Convert data to timeline formatfrom_timeline(...): Convert from timeline format to intervalstmerge(...): Merge time-dependent covariatestmerge2(...): Merge time-dependent covariates (version 2)tmerge3(...): Merge time-dependent covariates (version 3)collapse(...): Collapse survival datacoxcount1(...): Cox counting process calculationscoxcount2(...): Cox counting process calculations (version 2)agexact(...): Exact Anderson-Gill calculationsnorisk(...): No-risk calculationscipoisson(...): Poisson confidence intervalscipoisson_exact(...): Exact Poisson confidence intervalscipoisson_anscombe(...): Anscombe Poisson confidence intervalscox_callback(...): Cox model callback for iterative fittingThe PSpline class provides penalized spline smoothing:
Constructor Parameters:
x: Covariate vector (list of floats)df: Degrees of freedom (integer)theta: Roughness penalty (float)eps: Accuracy for degrees of freedom (float)method: Penalty method for tuning parameter selection. Supported methods:
"GCV" - Generalized Cross-Validation"UBRE" - Unbiased Risk Estimator"REML" - Restricted Maximum Likelihood"AIC" - Akaike Information Criterion"BIC" - Bayesian Information Criterionboundary_knots: Tuple of (min, max) for the spline basisintercept: Whether to include an intercept in the basispenalty: Whether or not to apply the penaltyMethods:
fit(): Fit the spline model, returns coefficientspredict(new_x): Predict values at new x pointsProperties:
coefficients: Fitted coefficients (None if not fitted)fitted: Whether the model has been fitteddf: Degrees of freedomeps: Convergence toleranceBuild the Rust library:
cargo build
Run tests:
cargo test
Format code:
cargo fmt
The codebase is organized with:
src/test/This project is licensed under the MIT License - see the LICENSE file for details.