symbolic_polynomials

Crates.iosymbolic_polynomials
lib.rssymbolic_polynomials
version0.1.0
sourcesrc
created_at2015-06-28 15:23:43.782139
updated_at2016-12-20 20:28:54.07952
descriptionA library for manipulation of polynomials over the integers.
homepagehttp://Metadiff.github.io/symbolic_polynomials
repositoryhttps://github.com/Metadiff/symbolic_polynomials
max_upload_size
id2483
size131,655
Alexander Botev (botev)

documentation

http://Metadiff.github.io/symbolic_polynomials

README

Symbolic Polynomials

Build Status Documentation License

A Rust library for manipulation and evaluation of symbolic integer polynomials.

Template types arguments

All of the symbolic expressions have three template types associated with them.

  1. I - the type that uniquely identifies a single symbolic variable
  2. C - the type of the free coefficient in every monomial
  3. P - the type of the power used in every monomial

Overview

The main class you most likely will be using is Polynomial<I, C, P>, which represents any symbolic polynomial. The easiest way to create single variables (e.g. like a, b, c ...) is by calling variable(I id). The will be a unique identification of the variable. From there you can use standard arithmetic operators with both other symbolic expressions and with constants.

If you want to evaluate a symbolic expression, you can call its eval method, which requires you to specify a mapping from unique identifiers to their assignments.

You can also use automatic deduction to solve a system of equations.

The ordering of both the polynomials and monomials are based on Graded reverse lexicographic order derived from the ordering on I. Note that this requires the comparison operators to be implemented for type I.

The library provide implements Display to convert any expression to a humanly readable format. Additionally the to_code method renders powers as repeated multiplications, and the output string would look like code snippet.

One drawback is that all of the operators are defined for references.

Installation

Just add the dependency in your Cargo.toml file and then import the crate.

Example usage

Below is the code for a the example found in the examples folder.


use std::collections::HashMap;

extern crate symbolic_polynomials;
use symbolic_polynomials::*;

type SymInt = Polynomial<String, i64, u8>;

pub fn main() {
    // Create symbolic variables
    let a: SymInt = variable("a".into());
    let b: SymInt = variable("b".into());
    let c: SymInt = variable("c".into());

    // Build polynomials
    // 5b + 2
    let poly1 = &(&b * 5) + 2;
    // ab
    let poly2 = &a * &b;
    // ab + ac + b + c
    let poly3 = &(&b + &c) * &(&a + 1);
    // a^2 - ab + 12
    let poly4 = &(&(&a * &a) - &(&a * &b)) + 12;
    // ac^2 + 3a + bc^2 + 3b + c^2 + 3
    let poly5 = &(&(&a + &b) + 1) * &(&(&c * 2) + 3);
    // floor(a^2, b^2)
    let poly6 = floor(&(&b * &b), &(&a * &a));
    // ceil(a^2, b^2)
    let poly7 = ceil(&(&b * &b), &(&a * &a));
    // min(ab + 12, ab + a)
    let poly8 = min(&(&(&a * &b) + 12), &(&(&a * &b) + &a));
    // max (ab + 12, ab + a)
    let poly9 = max(&(&(&a * &b) + 12), &(&(&a * &b) + &a));
    // max(floor(a^2, b) - 4, ceil(c, b) + 1)
    let poly10 = max(&(&floor(&(&a *&a), &b) - 2), &(&ceil(&c, &b) + 1));

    // Polynomial printing
    println!("{}", (0..50).map(|_| "=").collect::<String>());
    println!("Displaying polynomials");
    println!("{}", poly1);
    println!("{}", poly2);
    println!("{}", poly3);
    println!("{}", poly4);
    println!("{}", poly5);
    println!("{}", poly6);
    println!("{}", poly7);
    println!("{}", poly8);
    println!("{}", poly9);
    println!("{}", poly10);
    println!("{}", (0..50).map(|_| "=").collect::<String>());

    // Polynomial evaluation
    let mut values = HashMap::<String, i64>::new();
    values.insert("a".into(), 3);
    values.insert("b".into(), 2);
    values.insert("c".into(), 5);
    println!("Evaluating for a = 3, b = 2, c = 5.");
    println!("{} = {} [Expected 12]", poly1, poly1.eval(&values).unwrap());
    println!("{} = {} [Expected 6]", poly2, poly2.eval(&values).unwrap());
    println!("{} = {} [Expected 28]", poly3, poly3.eval(&values).unwrap());
    println!("{} = {} [Expected 15]", poly4, poly4.eval(&values).unwrap());
    println!("{} = {} [Expected 78]", poly5, poly5.eval(&values).unwrap());
    println!("{} = {} [Expected 0]", poly6, poly6.eval(&values).unwrap());
    println!("{} = {} [Expected 1]", poly7, poly7.eval(&values).unwrap());
    println!("{} = {} [Expected 9]", poly8, poly8.eval(&values).unwrap());
    println!("{} = {} [Expected 18]", poly9, poly9.eval(&values).unwrap());
    println!("{} = {} [Expected 4]", poly10, poly10.eval(&values).unwrap());
    println!("{}", (0..50).map(|_| "=").collect::<String>());

    // Variable deduction
    values.insert("a".into(), 5);
    values.insert("b".into(), 3);
    values.insert("c".into(), 8);
    let implicit_values = vec![(poly1.clone(), poly1.eval(&values).unwrap()),
    (poly2.clone(), poly2.eval(&values).unwrap()),
    (poly3.clone(), poly3.eval(&values).unwrap())];
    let deduced_values = deduce_values(&implicit_values).unwrap();
    println!("Deduced values:");
    println!("a = {} [Expected 5]", deduced_values["a"]);
    println!("b = {} [Expected 3]", deduced_values["b"]);
    println!("c = {} [Expected 8]", deduced_values["c"]);
    println!("{}", (0..50).map(|_| "=").collect::<String>());
}

The output of the program:


==================================================
Displaying polynomials (string representation = code representation):
5b + 2 = 5 * b + 2
ab = a * b
ab + ac + b + c = a * b + a * c + b + c
a^2 - ab + 12 = a * a - a * b + 12
2ac + 3a + 2bc + 3b + 2c + 3 = 2 * a * c + 3 * a + 2 * b * c + 3 * b + 2 * c + 3
floor(b^2, a^2) = floor(b * b, a * a)
ceil(b^2, a^2) = ceil(b * b, a * a)
min(ab + 12, ab + a) = min(a * b + 12, a * b + a)
max(ab + 12, ab + a) = max(a * b + 12, a * b + a)
max(floor(a^2, b) - 2, ceil(c, b) + 1) = max(floor(a * a, b) - 2, ceil(c, b) + 1)
==================================================
Evaluating for a = 3, b = 2, c = 5.
5b + 2 = 12 [Expected 12]
ab = 6 [Expected 6]
ab + ac + b + c = 28 [Expected 28]
a^2 - ab + 12 = 15 [Expected 15]
2ac + 3a + 2bc + 3b + 2c + 3 = 78 [Expected 78]
floor(b^2, a^2) = 0 [Expected 0]
ceil(b^2, a^2) = 1 [Expected 1]
min(ab + 12, ab + a) = 9 [Expected 9]
max(ab + 12, ab + a) = 18 [Expected 18]
max(floor(a^2, b) - 2, ceil(c, b) + 1) = 4 [Expected 4]
==================================================
Deduced values:
a = 5 [Expected 5]
b = 3 [Expected 3]
c = 8 [Expected 8]
==================================================

You can check out the tests in the tests folder for more examples.

Limitations

Currently, the automatic deduction for solving system of equations is pretty limited. The main reason is that for the purposes that the project has been developed it is sufficient. A more powerful and complete algorithm would probably use Grobner basis.

License

The project is distrusted under the Apache 2.0 License.

Contributing

If you want to contribute in any way please make an Issue or submit a PR request describing its functionality.

Commit count: 42

cargo fmt